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A B S T R A C T   

Petrographic analysis is based on the microscopic description and classification of rocks and is a crucial tech
nique for sedimentary and diagenetic studies. When compared to hand specimens, thin sections provide better 
and more accurate means for analysis of mineral proportion, distribution, texture, pore space analysis, and 
cement composition. Most petrographic analysis relies on visual inspection of rock thin sections under a mi
croscope, a task that is laborious even for experienced geologists. Large projects with a tight time frame requiring 
the analysis of a large amount of thin sections may require multiple petrographers, thereby risking the intro
duction of inconsistency in the analysis. To address this challenge, we explore the use of deep convolutional 
neural networks (CNN) as a tool for acceleration and automatization of microfacies classification. We make use 
of transfer learning based on robust and reliable CNN models trained with a large amount of non-geological 
images. With a relatively small number of labeled thin sections used in “fine-tuning” training we are able to 
adapt CNN models that achieve low error levels (<5%) for the classification of microfacies from the same dataset, 
and moderate results (<40%) for the classification of microfacies of thin sections from different datasets. These 
alternate datasets differ from the training data on two independent factors: the thin sections are from different 
formations and are prepared by different laboratories. While becoming widely accepted as a useful tool in the 
biological and manufacturing disciplines, CNN is currently underutilized in the geoscience community; we 
foresee an increase of use of such techniques to help accelerate and quantify a wide variety of geological tasks.   

1. Introduction 

Petrography focuses on the microscopic description and classifica
tion of rocks, and remains one of the most used techniques in geoscience 
studies. The essential tool in petrographic analysis is an optical micro
scope that uses plane or polarized transmitted light to capture the op
tical properties of minerals. Using the optical microscope, the geologist 
or petrographer examines a rock thin section, which is a flat rock sample 
usually 30 μm thick, mounted on a glass slide. The goal is to observe and 
describe the characteristics of the rock such as grain geometry, structure, 
mineralogical composition, fossil content, and texture. Based on these 
characteristics, the petrographer defines different rock types called 
microfacies. Because this study only uses rock samples description at a 
microscopic level (thin section), we will refer to these rock types as 
microfacies. Petrographic studies are essential components of geological 
analysis, ranging from academic studies of mid-ocean ridges to 

petroleum-industry exploration and development of shale resource 
plays. 

One of the most important uses of petrographic studies is to define 
microfacies. However, hundreds of thin sections need to be described 
when classifying microfacies, which is time-consuming. Although the 
point-count method provides more accurate classification for a thin 
section, point counts are often discarded as a classification option as it is 
considered a draining task. In our experience, a qualified geologist can 
take up to 20 min to count 300 points (the minimum number of points 
necessary for the point-counting methodology) in a single thin section 
when the petrographer is familiar with the mineralogical composition of 
the rock. Due to the long amount of time required for the analysis of a 
single sample, the mechanical thin section point-count is often replaced 
by an interpretative approach. A single thin section interpretation can 
take less than a minute, in cases in which the petrographer is familiar 
with the microfacies, or up to tens of minutes, in cases in which the thin 
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section presents elements that are unfamiliar to the petrographer. The 
interpretation process can be subjective, thereby enhancing the risk of 
inconsistent labeling. Cheng et al. (2018) observed that new thin sec
tions are continuously produced, adding to the number of samples that 
need to be analyzed and archived by the geoscience community. Large 
amounts of thin sections are constantly analyzed due to the acquisition 
of new data or reinterpretation of legacy data to ensure consistency. 

Launeau and Robin (1996), P�rikryl (2001), and Nasseri and Mohanty 
(2008) reported that the progress of computer-aided image analysis 
techniques has facilitated the characterization of the microscopic 
properties of the rock through analysis of digital thin section images. 
The need to partially automate this process has resulted in the proposal 
of several machine learning (ML) methods. For example, Sudakov et al. 
(2019) reported that convolutional neural networks (CNNs) out
performed previous models for permeability prediction using X-ray 
microtomography. Maitre et al. (2019) used different supervised and 
unsupervised learning techniques to identify mineral grains in sieved 
sand samples from natural glacial sediments. Our goal is to generate ML 
models for the classification of microfacies observed in thin sections that 
could produce reliable results in a fraction of the time used for manual 
classification and to provide the possibility for a more quantitative thin 
section classification analysis. 

The microfacies description obtained through images of thin sections 
are analogous to image classification problems. Datta et al. (2008) re
ported that image classification is one of the tasks in which machines 
have excelled, often obtaining faster and more accurate results than 
humans. Because ML models have been successful in a wide variety of 
image classification problems, we test CNNs for microfacies classifica
tion of thin section photographs. 

We begin our paper with a brief review of recent advances in using 
CNN as image classification in other fields, as well as some of the limited 
CNN applications using rock thin section data. Next, we describe the thin 
section preparation and data. We then describe the processing and 
analysis performed on the data and summarize our results. We conclude 
with a summary of the advantages and limitations of the technology. 

1.1. A short review of image processing using machine learning 

Customary ML methods are limited in their ability to process raw 
data (such as the pixel values of an image). Due to such limitations, for 
many years the construction of a pattern-recognition model demanded 
carefully detailed feature engineering (e.g. the analysis of the wings of 
an insect or the leaves of a tree) performed by domain experts (LeCun 
et al., 2015; Yin et al., 2017). Yang et al. (2018) observed that one of the 
reasons deep learning (DL) models attracted the attention of the 
research community is DL’s capacity to discover an effective feature 
transformation for a specific task. Current progress in DL models, spe
cifically CNN architectures, are the new the state-of-the-art in visual 
object recognition and detection, speech recognition, and many other 
fields of study (LeCun et al., 2015). The model described by Krizhevsky 
et al. (2012), frequently referenced to as AlexNet, is considered a 
breakthrough and influenced the rapid adoption of DL in the computer 
vision field (LeCun et al., 2015). A variant of AlexNet won the ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC, Russakovsky et al., 
2015) in 2012 achieving a top-5 test error rate (how often a true label is 
not one of the top 5 labels assigned by the model, a common metric for 
the ILSVRC) of 15%. The second-best entry for ILSVRC in 2012 had a 
top-5 error rate of 26%. AlexNet, with only five convolutional layers, has 
60 million parameters to be trained. At first glance, such a large number 
of parameters might seem like a drawback for the implementation of DL 
models. However, with the advances of graphics processing units 
(GPUs), the previously prohibitive long training time has been signifi
cantly reduced (Mou et al., 2017; Yang et al., 2018). 

In 2012 AlexNet used a five-layer deep CNN model; today many 
models competing in the ILSVRC use twenty to hundreds of layers. 
Huang et al. 2016 has even proposed models with thousands of layers. 

Due to the vast number of operations performed in deep CNN models, it 
is often difficult to discuss the interpretability, or the degree to which a 
decision made by a model can be rationalized. For this reason, many 
workers consider CNN to be a black box, with CNN interpretability itself 
a research topic (e. g. Simonyan et al., 2013; Olah et al., 2017, 2018; Yin 
et al., 2017). 

Recent CNN developments include several model architectures that 
achieved top-5 error rates under 10% in the ILSVRC dataset (e.g. Szeg
edy et al., 2014; Chollet, 2016; He et al., 2016a; Huang, Liu, et al., 2016; 
Sandler et al., 2018). Yosinski et al. (2014) and Yin et al. (2017) also 
reported that the parameters learned by the layers in many CNN models 
trained on images exhibit a very common behavior. The layers closer to 
the input data tend to learn general features, such as edge detectio
n/enhancement filters or color blobs. Then there is a transition to more 
specific dataset features, such as faces, feathers, or object parts. These 
general-specific CNN layers properties that lead to the development of 
transfer learning (e.g. Caruana, 1995; Bengio, 2012; Yosinski et al., 
2014). 

In transfer learning, first a CNN model is trained on a dataset for a 
primary task using large amounts of data. After training, the weights of 
the model are then repurposed or transferred to a second CNN that can 
be trained using a smaller dataset, generally domain-specific, for a 
secondary task (Yosinski et al., 2014).The domain-specific characteris
tics of a CNN being used for a new task are often addressed through 
fine-tuning. We provide a brief explanation of the fine-tuning process in 
the Methods section. Carranza-Rojas et al. (2017) observed that the 
processes of transfer learning and fine-tuning are important tools that 
can be used to address the shortage of sufficient domain-specific training 
data. 

Even though large datasets help the performance of DL models, the 
combination of these technologies (CNNs, transfer learning, and fine- 
tuning) facilitated the application of DL techniques to other scientific 
fields. Cunha et al. (2020) applied transfer learning to highlight faults on 
seismic volumes, Carranza-Rojas et al. (2017) used transfer learning for 
herbarium specimen classification, Esteva et al. (2017) for 
dermatologist-level classification of skin cancer, Gomez Villa et al. 
(2017) for camera-trap images, Hong et al. (2018) for soccer video scene 
and event classification, Chen et al. (2018) for airplane detection using 
remote sensing images, and Pires de Lima et al. (2019b) for oil field drill 
core images. In a study analyzing medical image data, Qayyum et al. 
(2017) found that transfer learning achieved results comparable to, or 
better than, results from training a CNN model with randomly initialized 
parameters. Given this record of success to diverse applications, we 
hypothesize that ML models will also be beneficial for thin section 
microfacies classification. 

1.2. Machine learning for petrographic image classification 

Cheng and Guo (2017) used CNN models to perform image classifi
cation based on granularity analysis from thin section images. The au
thors successfully differentiated between three feldspathic sandstone 
classes based solely on grain size: coarse-grained, medium-grained, and 
fine-grained rocks, achieving an accuracy of 98.5%. With 
high-resolution micro-computed tomography images or rock samples, 
Karimpouli and Tahmasebi (2019) used CNN to perform the segmen
tation of minerals in images mainly composed of quartz. Cheng et al. 
(2018) used CNN for the image retrieval of rock thin sections. The CNN 
is used to extract features from the thin section images which are then 
stored in a feature database. The images can then be retrieved based on 
estimates of the similarity between different images, those thin section 
images stored in the database and the new thin section image to be 
classified. Pires de Lima et al. (2019a) presented some preliminary re
sults of geoscientific images classifications, including thin section im
ages. Budennyy et al. (2017) used image processing and ML to perform a 
semi-automatic calculation of thin section minerals key features of thin 
section minerals, such as grain rugosity and roundness. 
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Huang et al. (2016) noted that when crafting CNN models, re
searchers are uncertain whether to choose from shorter or deeper net
works. Shorter networks have a more efficient forward and backward 
information flow; however, they might not be expressive enough to 
represent the image features properly. Deeper networks can generate 
more complex models, helping in feature extraction, but are more 
difficult to train in practice (e.g., due to computational costs, slower 
convergence, vanishing and exploding gradients among others). We 
avoid the challenges of model architecture development making use of 
well-established and robust CNN models previously trained on the 
ILSVRC. 

1.3. Data 

In our study, we analyze 98 thin sections under plane polarized light 
(PPL) to classify them within five microfacies: argillaceous siltstone, 
bioturbated siltstones, calcareous siltstone, porous calcareous siltstones, 
and massive calcite-cemented siltstones. All these microfacies can be 
identified using plane polarized light and a 10X magnification zoom. We 
take three randomly-placed photographic images for every thin section. 
Table 1 summarizes the number of thin sections and respective photo
graphs taken for each one of the five microfacies. The thin sections were 
acquired from five cores from the Sycamore Formation (Early Missis
sippian strata) in Carter County and Stephens County, Oklahoma. This is 
the main data of the study and is separated in training, validation, and 
test sets. 

To further evaluate whether the models generated from the data in 
Table 1 have more general applicability in classifying thin sections from 
different geologic formations and processed by different laboratories, 
we use thin section images from the public domain (referred to as public 
data) coming from Sycamore and Meramec formations (both Early 
Mississippian strata) stored at the Oklahoma Petroleum Information 
Center (OPIC) (Table 2). Early Mississippian strata in the Anadarko 
Basin in Oklahoma consist of a mixed carbonate-siliciclastic system. 
Slight differences in lithology, such as clay content, and geographic 
location, lead to different formation names, this is the case of the Mer
amec and Sycamore formations. The main difference between these 
formations is the clay content, being slightly higher in the Sycamore 
than the Meramec. Both formations were deposited as sediment-gravity 
flows in a mixed carbonate-siliciclastic system. Most of the public data 
came from the Meramec formation. 

2. Methods 

We use robust CNN architectures developed by computer vision 
specialists and previously put to test in a data-rich problem, thus we 
mainly focus on the adaptation of such CNN models to our domain- 
specific task: the microfacies classification problem. 

Because grain size plays a crucial role in petrographic analysis, we 
use images with a consistent 10x magnification zoom. To compensate for 
the relatively low resolution of most CNN models used to construct the 
ILSVRC dataset (usually ranging between 200 by 200–400 by 400 
pixels), we crop the original thin section photographs (1292 by 968 
pixels) into a suite of smaller 644 by 644 pixels, overlapping square 

images (sub-images, Fig. 1) thereby augmenting the number of training 
images. Data augmentation increases the diversity of training samples 
thereby reducing overfitting (Cireşan et al., 2011; Takahashi et al., 
2018). We eliminate the bottom right cropped images because many of 
them contain an alphanumeric scale bar (Fig. 1). The smaller images 
have enough resolution to be used for transfer learning, overlap between 
the sub-images helps to show that grain position is not important, and 
image size is sufficiently large to avoid isolating spurious bigger grains 
that could negatively impact the training. 

The image cropping process also increases the reliability in our final 
test data evaluation. Similar to how a petrographer classifies a thin 
section (or photograph of a thin section) based on an average of the 
visual aspect of the grains in the complete sample being analyzed, our 
model provides the classification based on the arguments of the maxima 
of the smaller sub-images. We call such an approach “voting” as the 
photograph of the thin section will be classified based on the microfacies 
with the most numbers of “votes”. Therefore, if a thin section image has 
most of its smaller sub-images labeled as argillaceous siltstone, the final 
lithofacies assigned by our model will be argillaceous siltstone. In cases 
in which there is not a single absolute maximum, we declare the model 
assigned a “tie” for the thin section image. 

During initial training, we observed that most of the incorrect CNN 
prediction labeling was due to a poor color balance in the photographs 
within the same microfacies, with some images having a color shift to 
red or yellow. Such color shift occurs due to the difference in color 
temperature when light passes through the thin section and it goes 
through the objective lens. Bianco et al. (2017) studied the effects of 
color balancing and found that suitable color balancing yields a signif
icant improvement in the accuracy for many CNN architectures. We 
follow Limare et al.’s (2011) methodology and compensate for the color 
shift assuming that the highest values of red, green, and blue observed in 
a photograph correspond to white, and the lowest values to black. Fig. 2 
shows the effect of color balancing on a representative thin section. 

After color balancing each image, we subdivide our thin section data 
from Table 1 into training, validation, and test data sets. The photo
graphs of the thin section are ensured to remain in a single set, i.e., all 
sub-images of a photograph are either in the training, or validation, or 
test set, never in more than one set. The training set goes through 
another simple step of data augmentation in which we simply rotate the 
sub-images in 90, 180, and 270�; then we flip the initial smaller cropped 
image around the horizontal axis and rotate it 90, 180, and 270� again. 
Unlike other computer vision tasks in which the orientation or the 
relative position of an element is important for the overall performance, 
position and rotation of grains in a thin section are irrelevant. Table 3 
shows the training, validation, and testing data set count after the pre- 
processing steps. These datasets are based on the sub-images and are 
available to download (supplementary materials) along with the orig
inal parallel polarized thin section photographs. 

With the data prepared, we fine-tune four off-the-shelf pretrained 
different CNN models: VGG19 (Simonyan and Zisserman, 2014), 
MobileNetV2 (Sandler et al., 2018), InceptionV3 (Szegedy et al., 2015), 
and ResNet50 (He et al., 2016). More details of the models’ architectures 
are provided in their original references, here we provide a short sum
mary of each one of them. VGG models are composed only of 

Table 1 
Original data used in this study. The thin sections are from the Mississippian 
Strata in the Ardmore basin, Oklahoma.  

Microfacies Number of thin 
sections 

Number of 
photographs 

Argillaceous siltstone 16 48 
Bioturbated siltstone 29 87 
Massive calcareous siltstone 15 45 
Massive calcite-cemented 

siltstone 
25 75 

Porous calcareous siltstone 13 39  

Table 2 
Public data used as final test for this study.  

Microfacies Number of thin 
sections 

Argillaceous siltstone 0 
Bioturbated siltstone 25 
Massive calcareous siltstone 18 
Massive calcite-cemented siltstone 19 
Porous calcareous siltstone 19 
Lithofacies not present in training data (referenced as 

“Unknown”) 
19  
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convolutional, pooling layers, and fully connected layers, and are 
therefore relatively simple when compared to the other architectures, 
and can be useful as a baseline. InceptionV3 is an improvement on 
GoogLeNet (Szegedy et al., 2014) and uses Inception blocks that 
combine convolutional filters with different sizes, as well as concate
nation of filter outputs to achieve better performance. ResNets apply 
residual blocks, adding the output from the previous layer to the up
coming layer. The use of residual blocks made it possible to train deeper 
networks and helps with vanishing and exploding gradients. Finally, 
MobileNetV2 is an improvement on MobileNet (Howard et al., 2017) 
and makes use of depthwise separable convolution as building blocks. 
These architectures were chosen due to their popularity and ease of 
access to trained models. All models have convolutional layers on their 
base (i.e., closer to the input of the model) and terminate on fully con
nected layers (i.e., closer to the output of the model). Hereinafter we 
generically refer to “base model” as any of the pre-trained architectures 
described above; “top model” as the fully connected layers; and “con
volutional layers” as the initial blocks, whether composed of Inception, 
residual, or other blocks. To perform fine-tuning, we discard the original 
top model and train a new classification network (or new top model) on 
top of the original convolutional layers of the base models. 

The fine-tuning technique here is very similar to the one imple
mented by Yin et al. (2017):  

1. Remove the top layers of the CNN model with ILSVRC parameters, 
and use the CNN model as the base model fixed feature extractor 
(traditional transfer learning, Yin et al., 2017). For all the base 
models, we maintain all convolutional layers to perform feature 
extraction. With the features extracted by the convolutional layers, 
we train a new classification network with five outputs (according to 
our number of classes/microfacies) by using Stochastic Gradient 
Descent (SGD) optimization. The new top model is simple, composed 
of a single dropout layer followed by a fully connected layer.  

2. Combine the newly trained small classification network on the top of 
the base CNN model. We again use SGD with a small learning rate (le- 
4, reducing by a factor of 10 on plateaus), to update the parameters 
for the complete CNN model. 

In other words, fine-tuning is a two-step process. In the first step, the 
new classification model initialized with random weights is trained 
using as input the features extracted by the convolutional layers of the 
pretrained CNN model (the base model). Thus, the convolutional filters 

Fig. 1. An original photograph of a massive 
calcareous siltstone thin section (center, bigger) 
taken with 10x objective magnification and the 
sub-images used for training and testing (top and 
bottom rows, smaller). Sub-image a indicates 
with a black outline the boundaries and the 
center of the cropped image with a golden circle 
and the respective letter. The other sub-images 
are only represented by their center letters. 
Sub-image f is discarded in the training and 
validation set, as some original photographs will 
be marked with a scale bar. (For interpretation of 
the references to color in this figure legend, the 
reader is referred to the Web version of this 
article.)   
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of the base model are not updated. In the second step, the base and the 
new top model are combined, and the weights of the complete network 
are updated during training. 

We use cross-entropy Hðp; qÞ during training: 

Hðp; qÞ¼ �
XC

c¼1
pclogðqcÞ (1)  

where C is the number of classes, logis the natural logarithm, p repre
sents the true labels, and q the output of the last classification layer in 
the network. Hðp; qÞ represents the cost of a single sample and we 

minimize the loss, sum of costs of all samples, over all training samples. 
When we minimize the cross-entropy, we incentivize the CNN to in
crease the probability that the analyzed image to be assigned to the class 
c, when the image true label belongs to the class c. 

We evaluate the performance of the fine-tuned models based on the 
test data separated from our original data set. We then select the best 
model and perform a final evaluation based on the classification our 
model provides to the public data. To perform the final evaluation, we 
use the six sub-images (Fig. 2) and three extra randomly centered sub- 
images with the same dimensions as the sub-images as shown in 
Fig. 2. These three extra sub-images help in the voting process to reduce 
the chances of ties. 

3. Results 

Table 4 shows the training, validation, and test set accuracy of the 
four fine-tuned CNN models, as well as the test set accuracy for the 
resulting thin section photograph voting. Table 4 also provides test set 
kappa metrics for the thin section photograph voting. We trained the 
models using a laptop with an NVIDIA GeForce GTX 1050 graphic 

Fig. 2. Effects of color balancing. Row (a) examples of cropped photographs of massive calcareous siltstone before and row (b) after color balancing. Row (c) 
bioturbated siltstone before and (d) after color balancing. Note the examples in the last column. Sometimes photographs tend to be yellow, red or blue. The color 
balancing process helps to merge these images with the rest of the dataset. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 

Table 3 
Original data separated in training, validation, and test sets.  

Lithofacies Training set Validation set Test set 

Argillaceous siltstone 880 55 90 
Bioturbated siltstone 1200 110 190 
Massive calcareous siltstone 680 70 80 
Massive calcite-cemented siltstone 1160 120 125 
Porous calcareous siltstone 640 30 85  
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processing unit. Training is relatively fast, and the time to train one 
model ranged between one and 2 h. All models reach accuracies higher 
than 90% on the test set, however some overfitting is present as training 

data shows 100% accuracy. The use of augmentation improves accuracy 
by an average of 9 percentage points (pp) for the validation set, and 6pp 
for the test set. Results in Table 4 shows that the technique of 

Table 4 
Accuracy of sub-images, and accuracy and kappa for thin section photographs provided by fine-tuned models. The thin section receives the label according to the 
winning vote of its labeled smaller image crops.  

Fine-tuned model Accuracy Kappa 

Training (sub-images) Validation (sub-images) Test (sub-images) Test (photograph voting) Test (photograph voting) 

VGG19 1.00 0.93 0.93 0.95 0.93 
MobileNetV2 1.00 0.90 0.91 0.94 0.92 
InceptionV3 1.00 0.90 0.91 0.96 0.95 
ResNet50 1.00 0.89 0.91 0.96 0.95  

Fig. 3. Examples of classification provided by fine-tuned ResNet50 for the smaller cropped images in the test set. Images in the same row were extracted from the 
same microfacies as labeled by the interpreter. The left column shows examples of smaller cropped images in which the classification provided by the CNN model is 
the same as the classification provided by the petrographer. In contrast, the right column shows examples of smaller cropped images in which the classification 
provided by the CNN is not the same as the classification provided by the petrographer. Row (a) shows sub-images extracted from a photograph classified as 
argillaceous siltstone by the petrographer, row (b) was classified as bioturbated siltstone, (c) as massive calcareous siltstone, (d) massive calcite-cemented siltstone, 
and (e) porous calcareous siltstone. 
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photograph voting improves accuracy. Following McHugh (2012) for 
Cohen’s kappa interpretation, all models achieve almost perfect (>0.90) 
level of agreement with the labels provided for the thin section photo
graphs by the petrographer. The fine-tuned InceptionV3 and ResNet50 
tied with the best accuracy (0.96) in the test set for photograph voting, 
but the overall difference in performance is small, showing that even the 
relatively simple VGG19 can properly classify most of the data. 

Fig 3 shows examples of the resulting classification assigned by the 
fine-tuned ResNet50 to different sub-images of each one of the five 
classes present in the training data. Such examples provide a useful 
sample on the details of the prediction provided by the fine-tuned 
models. For each one of the five classes, we select thin section photo
graphs of sub-images in which the fine-tuned ResNet50 assigned the 
same classification as the petrographer. Thus, Fig. 3 shows examples in 
which the class provided by the fine-tuned ResNet50 agrees with the 
classification provided by the petrographer, as well as examples in 
which the classification is different. 

Fig. 4 shows the performance of the fine-tuned models compared 
against the petrographer-provided classification for the thin section 
photographs making use of confusion matrices. The results show that the 
majority of disagreements happen in microfacies containing very similar 

characteristics between each other, e.g., between argillaceous siltstone 
and bioturbated siltstone, and between massive calcite siltstone and 
massive calcite-cemented siltstone. MobileNetV2 (Fig. 4) is the only 
fine-tuned model that confuses massive calcite siltstone with porous 
calcareous siltstone. Such confusion might be indicative that in this 
experiment MobileNetV2 is slightly less sensitive to the blue color of the 
epoxy used to highlight porosity, as that is one of the main differences 
between massive calcite siltstone and porous calcareous siltstone. Yet, it 
is striking how minor differences between argillaceous siltstone and 
bioturbated siltstone are so well captured by the models. Bioturbation 
structures are minor lineaments or disturbances on the organization of 
grains caused by organisms, are often very subtle, and the only differ
ence between argillaceous siltstone and bioturbated siltstone. Thus, it is 
encouraging CNN models are capable of using that information to 
differentiate between classes. 

Lastly, we use the fine-tuned models to classify public data from the 
OPIC (Fig. 5). This evaluation of our model using public data serves as an 
initial evaluation of a possible multi-formation or multi-basin thin sec
tion CNN classifier. Results show a drastic decrease in the performance 
of the models, with accuracies below 50%. Metrics computed without 
consideration of the unknown microfacies (Table 5) are slightly better, 

Fig. 4. Confusion matrix comparing the classification provided by the petrographer (reference) and the classification obtained with the fine-tuned models (pre
diction) for the test set thin section photographs. (a) shows the classification provided by the fine-tuned VGG19, as well as the accuracy and kappa values. (b), (c), 
and (d) show results for MobileNetV2, InceptionV3, and ResNet50 respectively. The class names are abbreviated: Argillaceous siltstone (AS), Bioturbated siltstone 
(BS), Massive calcareous siltstone (MCS), Massive calcite-cemented siltstone (MCCS), and Porous calcareous siltstones (PCS). 

R. Pires de Lima et al.                                                                                                                                                                                                                         



Computers and Geosciences 142 (2020) 104481

8

with a kappa indicating minimal agreement for MobileNetV2 and VGG, 
and weak agreement for other models. Moreover, unlike the results 
obtained with the original data (Table 4 and Fig. 4), the disagreement 
occurs for microfacies that are significantly different. For example, 
MobileNetV2 classifies photographs originally classified as bioturbated 
siltstone as massive calcite-cemented siltstone eight times (shown in 
Fig. 6). Despite being the same microfacies, the samples of bioturbated 
siltstone in the training set are different than the ones in the public data. 
Although the voting process helps classification, the strategy to extract 
three randomly centered sub-images, adding to those sub-images shown 

in Fig. 1, is not very robust in this case and accuracy can vary signifi
cantly with different random sub-images. In the experiments with the 
worst performance, the accuracy ignoring unknowns for the best per
forming ResNet50 and InceptionV3 were low as 47% and 43% respec
tively. Similar variation in performance due to different random sub- 
images is not observed with the original data, indicating models are 
more robust when the test set has similar characteristics to the training 
set. As we continue to add more training data and better adapt our CNN 
models, we anticipate further acceleration and accuracy of thin section 
analysis. 

4. Discussion 

To the authors’ knowledge, this is one of the few studies for auto
mated microfacies classification with CNN using rock thin sections. In 
the methodology we implement, a user can take multiple photographs of 
a single thin section, and obtain its classification as predicted by the 
model. Based on our tests, the accuracy of the procedure presented here 
is comparable to accuracies of a petrographer, as long as the lithofacies 
being analyzed were present in the training data and the thin sections 
were processed with similar methodology. Our study is different than 

Fig. 5. Confusion matrix comparing the classification provided by the petrographer (reference) and the classification obtained with the fine-tuned models (pre
diction) for the final public data test set thin section photographs. (a) shows the classification provided by fine-tuned VGG19, as well as the accuracy and kappa 
values. (b), (c), and (d) show results for MobileNetV2, InceptionV3, and ResNet50 respectively. The class names are abbreviated: Argillaceous siltstone (AS), Bio
turbated siltstone (BS), Massive calcareous siltstone (MCS), Massive calcite-cemented siltstone (MCCS), and Porous calcareous siltstones (PCS). 

Table 5 
Accuracy and kappa for thin section photographs provided by fine-tuned models 
for the public data. The metrics in this table are computed ignoring the “un
known” samples.  

Fine-tuned model Accuracy Kappa 

VGG19 0.51 0.37 
MobileNetV2 0.38 0.21 
InceptionV3 0.59 0.48 
ResNet50 0.66 0.56  
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that of Cheng and Guo (2017) because we differentiate between five 
different microfacies, whereas Cheng and Guo (2017) differentiate be
tween three granulometric classifications. In some sense, the analysis 
performed by Budennyy et al. (2017) using thin sections is more com
plete than the one we provide in this study. Budennyy et al. (2017) were 
able to classify the mineral composition of sandstones with an accuracy 
of 80%. Their technique relies on watershed segmentation methods to 
isolate mineral grains and extract features before further analysis. Such 
an approach is interesting in the fact that it generates data useful to 
perform a more complete analysis of the thin section (e.g., making 
possible to analyze roundness, grain size, and others), but also in
troduces another step that needs to be quality controlled by domain 
experts. One of the disadvantages of classical feature extraction meth
odologies is their heavy dependence on human intervention. Moreover, 
the choice of features to be used for analysis is time consuming and 
frequently depends on heuristic design decisions. Neither Cheng and 
Guo (2017), Budennyy et al. (2017), or Karimpouli and Tahmasebi 
(2019) provided examples of the performance of their model when 
tested with significantly different data, as we present in our public data 
evaluation. 

Unlike a human interpreter who relies upon a defined set of 
morphological measurements to perform microfacies classifications, the 
CNN operates from no knowledge of specific attribute analysis and 
performs the classification based on image characteristics. CNN labeled 
datasets have the potential to reduce petrographer bias, yielding a 
reduced inconsistency on thin sections classification. When analyzing a 
new image, the CNN model (as implemented in this study) will always 
generate a set of probabilities that such image belongs to the CNN’s 
learned microfacies. For that reason, Fig. 5 shows that the CNN provides 
classifications for all the thin sections classified as unknown by the 
petrographer. The number of unknowns can be reduced when more 

examples of microfacies are provided to the CNN models. 
Fig. 4 indicates that the CNN misclassifications are in fact similar to 

the description a petrographer would assign to a particular section of a 
thin section photograph. Due to thin section heterogeneities, the CNN 
classification maybe is may be correct for the particular sub-image in 
analysis, but accuracy generally increases when multiple sub-images are 
used. Therefore, our voting scheme then is helpful as it reduces possible 
misconceptions. One of the explanations for the misclassification is the 
criteria that the petrographer used for thin section microfacies classifi
cation. There are two main groups of rock types: structureless or 
massive, and structured. To divide the microfacies within these two 
main groups, the petrographers use a qualitative-visual criterion. For 
example, the massive siltstones can be calcareous, porous, and calcite- 
cemented. However, the criteria used to divide between them were 
the visual content of calcite cement and porosity and no statistical 
method was used to quantify the proportion of cement or porosity. Thus, 
the misclassifications in the original dataset (Table 4 and Fig. 5), are 
mostly caused due to the fact that the microfacies are classified based on 
gradual boundaries and the division between classes can be somewhat 
subjective. We suggest including other data to quantify the amount of 
cement, mineralogy and porosity. With a more quantitative interpreta
tion, we can reduce the interpretation bias. 

Fig. 5 and Table 5 show that the performance is greatly reduced 
when models are used to classify public data. The misclassifications in 
the public data are mostly due to different staining, as well as different 
mineralogy composition and imaging, changing the image characteris
tics. The models were built with thin sections stained with Alizarin red 
for calcite identification, and blue epoxy for porosity identification. 
However, public data thin sections do not always have these features. 
Therefore, thin sections with high calcite content could be labeled as 
microfacies without calcite. In fact, most of the confusion between 

Fig. 6. Examples of the eight misclassified bioturbated siltstone thin sections from the public data and samples from training set. (a) the eight bioturbated siltstones 
thin sections classified as massive calcite-cemented siltstones by MobileNetV2. (b) examples of bioturbated siltstones in the training set (images that the CNN models 
evaluated during training). (c) examples of massive calcite-cemented siltstones in the training set. 
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massive calcite-cemented siltstones and the calcareous siltstones could 
be explained by the lack of alizarin stains. 

Finally, the photograph by itself plays an important role in the model 
and so can contribute to the label bias. The original labels resulted from 
the observation of the actual thin sections under the microscope and not 
based on the photographs. Dozens of different photographs without any 
overlap can be taken from the same thin section with 10X objective 
magnification. The photographs we captured for this study were taken 
randomly in different locations of the thin section. What differentiates 
between argillaceous and bioturbated siltstones are the bioturbation 
patterns. Bioturbation is evident when the thin sections are examined 
under the microscope, however, sometimes the bioturbation evidence is 
obscured when cropping the thin section images into smaller 10X pho
tographs. Thus, to avoid misclassification the photographs should depict 
the criteria used by the petrographer for the original classification. This 
difficulty in capturing complete characteristics of the entirety of the thin 
sections with random photographs indicates that most of the misclassi
fication is the result of the preparation and labeling of the data used to 
train the model rather than the CNN model by itself. This misclassifi
cation pattern also shows a potential improvement that the use of CNN 
models can provide. If the thin section is captured in its entirety, the 
CNN can quickly provide classifications for all its sections. A petrogra
pher can then quality control the CNN results as well as easily note 
outliers that could either be mistakes or important features that can be 
further analyzed. 

As the digitization of legacy data accelerates, and thin section 
preparation and data storage methodologies are standardized, the 
approach presented here can improve with more detailed and directed 
image processing. Image segmentation techniques can be used to 
differentiate between different minerals, which can be a powerful tool 
for microfacies classification. The technique we demonstrate in this 
manuscript is very general and can easily be modified to suit the iden
tification of thin sections coming from different formations. 

5. Conclusions 

In this paper, we propose the use of transfer learning and fine-tuning 
of robust CNN models for petrographic thin section classification, 
achieving accuracies above 90% for all the models tested when using 
data from the Sycamore Formation and obtained with the same type of 
processing. Furthermore, using public data, we investigate how such 
fine-tuned CNN models can be used to classify sediment-gravity flows in 
a mixed carbonate-siliciclastic systems from the Sycamore and Meramec 
formations with significantly different parameters; however, current 
results show a drastic reduction in the model’s performance. It is likely 
fine-tuning could perform well using thin section photographs of sedi
ments in other depositional settings or other basins, as long as enough 
data is available. 

We focus on the use of parallel polarized petrographic thin section 
images, as they are sufficient to differentiate between the classes/ 
microfacies present in our dataset. Cross-polarized images could be 
included for the cases in which such imaging technique is crucial for 
proper lithofacies classification, for example to differentiate between a 
rock enriched in quartz grains and a rock enriched in feldspars grains. In 
addition, this paper mostly concentrates on the use of CNN models at a 
specific 10x magnification level. As different lithological and diagenetic 
properties can only be analyzed in different scales, many other studies 
can be conducted with a similar technique. We believe that the imple
mentation of the methodology we discuss here has the potential to 
further improve petrographic thin section classification speed and help 
geoscientists make use of such invaluable data. 
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Glossary 

Accuracy: the fraction of total objects correctly classified. Values range from 0.0 to 1.0 
(equivalently, 0%–100%). Accuracy equals to 1.0 means all classifications were cor
rect, accuracy equals to 0.0 means all classifications were incorrect 

Convolution: a mathematical operation that combines two functions producing an output. 
In machine learning applications, a convolutional layer uses two discrete functions, 
the input data and a convolutional kernel, to train the convolutional kernel weights 

Convolutional Neural Networks (CNN): a neuron network architecture in which at least 
one layer is a convolutional layer 

Deep Learning (DL): an artificial neural network architecture that contains more than one 
hidden layer 

Fine-Tuning: the process of adjusting machine learning model parameters of a pre-trained 
model to improve performance for a specific problem type 

Kappa: Cohen’s kappa coefficient. A metric that takes into the consideration the agree
ment by chance. Kappa is given by κ p0 � pe

1� pe 
, where p0 is the accuracy and pe is the 

hypothetical probability of agreement by chance 
Label: the names applied to an instance, sample, or example (for image classification, an 

image) associating it with a given class 
Layer: a group of neurons in a machine learning model that process a set of input features 
Machine Learning (ML): a collection of approaches in which systems improve their per

formance through automatic analysis of data 
Neural Networks (NN): a machine learning model that combines linear and nonlinear 

transformations, loosely inspired in the behavior of brain neurons. It is typically 
organized in layers where each layer contains a number of nodes (or neurons) 

Neuron: A node in a neural network, typically taking in multiple input values and 
generating one output value. The neuron calculates the output value by applying an 
activation function (nonlinear transformation) to a weighted sum of input values 

Training: the process of finding the most appropriate weights of a machine learning model 
Transfer Learning: a technique that uses information learned in a primary machine 

learning task to perform a secondary machine learning task 
Top-X error: a measure of model accuracy. A classification is considered correct as long as 

the correct label is in one of the top X guessed labels. Top-1 error is the ratio of the 
incorrect classifications over the total number of classifications (1.0 minus accuracy) 

Weights: the coefficients of a machine learning model. In a simple linear equation, the 
slope and intercept are the weights of the model. In CNNs, the weights are the con
volutional kernel values. The training objective is to find the ideal weights of the 
machine learning model.This glossary presents common denominations in machine 
learning applications used throughout the manuscript. For a more comprehensive list, 
we refer the reader to Google’s machine learning glossary (“Machine Learning Glos
sary | Google Developers,” n.d.). 

R. Pires de Lima et al.                                                                                                                                                                                                                         

https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-210
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-210
https://doi.org/10.1016/j.cageo.2019.104344
https://doi.org/10.1016/j.cageo.2019.104344
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref12
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref12
https://doi.org/10.1038/nature21056
https://doi.org/10.1016/J.ECOINF.2017.07.004
https://doi.org/10.1016/J.ECOINF.2017.07.004
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ISACV.2018.8369043
https://doi.org/10.1109/ISACV.2018.8369043
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref17
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref17
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref17
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref18
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref18
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref19
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref19
https://doi.org/10.1016/J.CAGEO.2019.02.003
https://doi.org/10.1016/J.CAGEO.2019.02.003
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref21
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref21
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref21
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref21
https://doi.org/10.1016/S0040-1951(96)00091-1
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.5201/ipol.2011.llmps-scb
https://doi.org/10.1016/j.cageo.2019.05.009
https://doi.org/10.1016/j.cageo.2019.05.009
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref27
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref27
https://doi.org/10.1109/TGRS.2016.2636241
https://doi.org/10.1109/TGRS.2016.2636241
https://doi.org/10.1016/J.IJRMMS.2007.04.005
https://doi.org/10.1016/J.IJRMMS.2007.04.005
https://doi.org/10.23915/distill.00007
https://doi.org/10.23915/distill.00007
https://doi.org/10.23915/distill.00010
https://doi.org/10.23915/distill.00010
https://doi.org/10.2110/sedred.2019.2.4
https://doi.org/10.1190/INT-2018-0245.1
https://doi.org/10.1016/S1365-1609(01)00031-4
https://doi.org/10.1016/J.NEUCOM.2017.05.025
https://doi.org/10.1016/J.NEUCOM.2017.05.025
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref37
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref37
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref38
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref38
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref39
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref39
https://doi.org/10.1016/j.cageo.2019.02.002
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref41
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref41
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref41
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref42
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref42
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref43
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref43
https://doi.org/10.1109/TGRS.2018.2815613
https://doi.org/10.1109/ICIEA.2017.8283041
https://doi.org/10.1109/ICIEA.2017.8283041
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref46
http://refhub.elsevier.com/S0098-3004(19)30762-9/sref46

	Petrographic microfacies classification with deep convolutional neural networks
	1 Introduction
	1.1 A short review of image processing using machine learning
	1.2 Machine learning for petrographic image classification
	1.3 Data

	2 Methods
	3 Results
	4 Discussion
	5 Conclusions
	Authorship statement
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A Supplementary data
	References


