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OK, USA

ABSTRACT
Bridges are an important type of transportation infrastructures. Once more than one bridge in a transpor-
tation network is extensively or completely damaged in a severe earthquake, the traffic capacity of the
network may degrade significantly, resulting in considerable social and economic consequences to the
community served. The principles of build back better (BBB) require that the performance level of a crit-
ical infrastructure facility should be properly determined in the post-hazard recovery process to reduce
the future risk. This paper proposes a continuous-time Markov decision process framework based on life-
cycle cost (LCC) for determining the optimum earthquake-resistant levels of the rebuilt bridges.
Compared to other optimisation methodologies, the proposed one owns two distinctive features: (1) net-
work-level LCC analyses are performed in the context of BBB principles; (2) optimum decisions are made
sequentially at random time points of earthquake occurrence, and the optimum earthquake-resistant
level of a rebuilt bridge depends on the performance levels of other bridges in the network. A hypothet-
ical transportation network is investigated to demonstrate the application of the proposed methodology.
In particular, the sensitivity of the optimum policy on network topology is studied.
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1. Introduction

A transportation network consists of roads, bridges, and
tunnels, which are spatially distributed but connected to
each other to meet the needs of the community that they
serve. Among these infrastructural facilities, bridges have
been proved to be vulnerable to seismic hazard by past
earthquake events (Basoz & Kiremidjian, 1998, Han et al.,
2009). Severe damages of bridges in an earthquake not only
require substantial expenditures for repairing or rebuilding,
but also can cause significant indirect social losses (e.g.,
delayed emergency response and business disruption).
Facing a severely damaged transportation network, the state
or local transportation authority must decide either to
restore the damaged bridges to their original intact states or
to upgrade their earthquake-resistant capacities. This deci-
sion point is a rare opportunity for the community to
enhance the resilience of its transportation infrastructure
system through thoughtful repair or rebuild decisions.

The idea of upgrading infrastructure facilities in post-
hazard recovery is encapsulated in Building Back Better
(BBB) principles originally proposed during the multi-
national recovery effort following the Indian Ocean
Tsunami (Clinton, 2006). Mannakkara and Wilkinson
(2013) established BBB principles for improving structural
design to achieve efficiency and effectiveness in the post-dis-
aster rebuilding process, and then tested these principles in
the Indian Ocean Tsunami reconstruction in Sri Lanka, and
the Victorian Bushfires in Australia.

At present, most studies on community resilience focus
on resilience assessment, short-term post-hazard recovery
modelling, and restoration prioritisation, with a view
towards restoring the functionality of the community to a
target condition (e.g., pre-hazard condition) quickly through
efficient resource allocation in the recovery process. For
instance, Cimellaro, Reinhorn, and Bruneau (2010) provided
a framework for the quantitative definition of resilience
using an analytical function that may fit both technical and
organisational issues; Gonz�alez, Due~nas-Osorio, S�anchez-
Silva, and Medaglia (2016) introduced the interdependent
network design problem for optimal infrastructure system
restoration subject to budget, resources, and operational
constraints; Lin and Wang (2017a, 2017b) proposed a simu-
lation-based building portfolio recovery model to predict
the functionality recovery time and recovery trajectory of
both individual buildings and building portfolios following a
natural hazard event, and applied the model to a mid-size
community; Zhang, Wang, and Nicholson (2017) presented
a resilience-based framework which systematically incorpo-
rates network topology, redundancy, traffic flow, damage
level, and available resources into optimisation process of
network post-hazard recovery strategy; Tabandeh, Gardoni,
Murphy, and Myers (2019) incorporated the information
from the recovery modelling of infrastructure and variations
in the socioeconomic characteristics into a time-dependent
reliability analysis in order to estimate the immediate impact
on individuals’ well-being and model the subsequent
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recovery. Such analyses are confined to a one-event time-
frame and do not investigate the option of utilising restor-
ation opportunities to enhance existing performance levels
to mitigate a community’s risk to future events.

Enhancement of the performance level reduces the risk of
failure in the future but requires additional cost in design,
materials and construction. An optimum trade-off between
the initial cost and future risk can be determined by life-cycle
cost (LCC) based analysis. LCC-based analysis was initially
applied to the optimum design of structures subject to haz-
ards more than four decades ago (Liu & Neghabat, 1972,
Rosenblueth, 1976a, Rosenblueth, 1976b), and was gradually
improved by other scholars (Kanda & Ellingwood, 1991, Ang
& De Leon, 1997, Wen & Kang, 2001, Frangopol & Maute,
2003). In recent years, some LCC-based optimisation frame-
works for making optimum maintenance schedules of civil
infrastructures have been proposed successively: Bocchini and
Frangopol (2011) presented a probabilistic computational
framework for optimising preventive maintenance applica-
tions to bridges in a highway transportation network; Dong,
Frangopol, and Saydam (2014) further proposed a probabilis-
tic framework to establish optimum pre-earthquake retrofit
plans for bridge networks to achieve sustainability objectives
in order to consider increasing seismic risk due to structural
deterioration, emphasising on determining retrofit timing;
Tapia and Padgett (2016) proposed an LCC-based framework
to identify favourable engineering solutions (e.g., steel jacket,
shear keys, among others) to retrofit and repair bridges sus-
ceptible to natural hazards which ensure public safety while
maximising sustainability measured by lifetime environmen-
tal, economic and social performance metrics. In these stud-
ies, however, it is tacitly assumed that each bridge in a
transportation network will be restored to its intact state after
each earthquake in the future, which is unable to consider the
impact of possible performance upgrading of the bridges in
the future on the current decision-making.

In the present paper, a continuous-time Markov decision
process framework based on life-cycle cost is proposed for
determining the optimum earthquake-resistant levels of the
rebuilt bridges. Compared to other optimisation methodolo-
gies, the proposed one owns two distinctive features: (1) net-
work-level LCC analyses are performed in the context of BBB
principles; (2) optimum decisions are made sequentially at ran-
dom time points of earthquake occurrence, and the optimum
earthquake-resistant level of a rebuilt bridge depends on the
performance levels of other bridges in the network. The
remaining of the paper is organised as follows: firstly, the the-
ory of continuous-time Markov decision process is briefly
introduced; then, a Markovian decision framework is formu-
lated, including definition of bridge states and restoration
actions, estimation of direct and indirect economic costs, and
computation of state transition probabilities; finally, a hypo-
thetical transportation network is analysed to demonstrate the
application of the framework, and some conclusions are drawn.

2. Markov decision process

Markov decision process (MDP) provides a mathematical
framework for modelling sequential decision making in a

wide range of situations where outcomes are determined by
decisions and exogenous random information. MDP theory
can date back to as early as the 1950s (Bellman, 1957). It
has long been applied to different branches of civil engin-
eering. For example, Camahan, Davis, Shahin, Keane, and
Wu (1987) developed an MDP procedure for making opti-
mum maintenance decisions for a deteriorating pavement;
Tao, Corotis, and Ellis (1995) proposed an optimum struc-
tural design framework that synthesises the initial structural
design and its maintenance policy over a design lifetime by
combining MDP and structural reliability theory. These
problems had been modelled as discrete-time Markov deci-
sion processes (DTMDP) by assuming that the decisions
are made at a sequence of equal-interval time points, which
is justifiable for maintenance practices. However, for the
problem at hand (post-earthquake restoration), the time
points of decision are random. Therefore, continuous-time
Markov decision process (CTMDP) is resorted to instead.

2.1. Continuous-Time Markov decision process

Stochastic optimisation problems in which decisions are
made sequentially at randomly spaced time points can be for-
mulated by the following optimality equation (Powell, 2007):

min
p

Ef
XfNjtN�Tg

n¼0

e�ktnC
�
Sn,AðSn, tnjpÞ

�
g (1)

where Ef�g is the expectation operator with respect to
the randomness involved in the process which is not
explicitly presented in the equation; Sn is the system
state at time tn; AðSn, tnjpÞ is the action determined by
policy p and state Sn; CðSn,AðSn, tnjpÞÞ is the cost
incurred when action AðSn, tnjpÞ is taken; k is the dis-
count rate that reflects the time value of money; and T
is the residual time horizon. For the problem at hand, Sn
denotes the earthquake-resistant level of a bridge as well
as its damage state after an earthquake; AðSn, tnjpÞ
denotes the target earthquake-resistant level for restoring
or rebuilding the bridge; CðSn,AðSn, tnjpÞÞ comprises not
only of the direct economic loss but also of the indirect
economic loss due to travel-time delay, as discussed in
detail in Section 4.

The solution to Equation (1) for realistic engineering
decision problems is computationally difficult or intract-
able. Thus, the usual method of attack is to break the
problem into a set of sub-problems by dynamic program-
ming:

V�ðt,SÞ¼min
p

fC
�
S,AðS,tjpÞ

�

þ
X
S02S

ðT
t
e�ksf ðsÞP

�
s,S0jS,AðS,tjpÞ

�
V�ðs,S0Þdsg,S2S

(2)

where f ðsÞ denotes the probability density function of ran-
dom time interval；V�ðt,SÞ denotes the value of being in
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state S at time t, which is essentially the minimum expected
present value of cost from the time point t on;
Pðs,S0jS,AðS,tjpÞÞ denotes the transition probability from
state S at time t to state S0 at time s given an action
AðS,tjpÞ, and is determined by the dynamics of the system
itself as well as the probabilistic distribution of the new ran-
dom information that arrives between t and s. Note that the
problems are assumed to be Markovian so that the state at
the next step only depends on the current state rather than
on all the previous states.

It is tacitly assumed that a completely damaged bridge
will be rebuilt at the same site after the earthquake. From
this viewpoint, the service life of a bridge can be seen as
infinity. In addition, progressive deterioration and fluctu-
ation of the parameters (such as discount rate) over time in
the long run are temporarily not considered in this paper
for simplicity. Under these circumstances, Equation (2) can
be further simplified as:

V�ðSÞ¼min
p

�
C
�
S,AðSjpÞ

�
þ
X
S02S

ð1
0
e�ksf ðsÞds

� �
P
�
S0jS,AðSjpÞ

�
V�ðS0Þ

�
, S2S

(3)

Earthquake occurrences are modelled as a Poisson pro-
cess. Thus, a set of Bellman’s equations of standard form
with an equivalent discount factor �=ðkþ �Þ is finally
obtained as follows:

V�ðSÞ ¼ min
p

�
C
�
S,AðSjpÞ

�
þ
X
S02S

� ð1
0
e�ksð�e��sÞds

�
P
�
S0jS,AðSjpÞ

�
V�ðS0Þ

�

¼ min
p

C
�
S,AðSjpÞ

��

þ
X
S02S

�

kþ �
P
�
S0jS,AðSjpÞ

�
V�ðS0Þ

!
, S 2 S

(4)

where � denotes the mean occurrence rate of earthquakes.

2.2. Policy iteration

Equation (4) is solved through policy iteration, which has
good convergence properties. Policy iteration randomly
selects an initial policy and then performs the following two
steps iteratively: (1) given a policy, evaluate the correspond-
ing state values; (2) with the state values known, search for
a better policy. The procedure is as follows:

Step 0. Initialisation:
a). Set an initial policy p0:
b). Set i¼ 1.

Step 1. Policy evaluation:
Given policy pi�1, compute the state values by solving a

set of linear equations:

VðSjpi�1Þ ¼ C
�
S,AðSjpi�1Þ

�
þ �

kþ �

X
S02S

P
�
S0jS,AðSjpi�1Þ

�
� VðS0jpi�1Þ, 8S 2 S

(5)

Step 2. Policy improvement:
Based on the state values fVðSjpi�1Þ, S 2 Sg, search for a

better policy pi :

AðSjpiÞ ¼ argmin
A2A

CðS,AÞ þ �

kþ �

X
S02S

PðS0jS,AÞVðS0jpi�1Þ
� �

, 8S 2 S

(6)

Step 3. If pi ¼ pi�1, set p� ¼ pi and stop; otherwise, set
i¼iþ 1 and go back to Step 1.

Rewrite Equation (5) in a compact matrix form:

Vpi�1 ¼ Cpi�1 þ
�

kþ �
Ppi�1Vpi�1 (7)

where

Vpi�1 ¼
Vpi�1ðS1Þ

..

.

Vpi�1ðSKÞ

2
664

3
775,Cpi�1 ¼

C
�
S1,AðS1jpi�1Þ

�
..
.

C
�
SK ,AðSK jpi�1Þ

�

2
66664

3
77775,

Ppi�1 ¼
P
�
S1jS1,AðS1jpi�1Þ

�
� � � P

�
SK jS1,AðS1jpi�1Þ

�
..
. ..

.

P
�
S1jSK ,AðSK jpi�1Þ

�
� � � P

�
SK jSK ,AðSK jpi�1Þ

�

2
66664

3
77775
(8)

Note that K denotes the total number of states. Thus, the
policy evaluation in Step 1 can be easily done through
matrix inversion:

Vpi�1 ¼ I� �

kþ �
Ppi�1

� ��1

Cpi�1 (9)

where I is the identity matrix.
It is worth emphasising that the computational cost required

for solving Equation (4) is proportional to the total number of
system states, which increases exponentially with the number of
bridges for the problem at hand (curse of dimensionality). In
order to extend the applicability of the proposed methodology, it
is necessary to resort to approximate solving algorithms of high
efficiency in the follow-up studies, such as reinforcement learn-
ing (Bradtke & Duff, 1995) and approximate dynamic program-
ming (Powell, Simao, & Bouzaiene-Ayari, 2012), among others.

3. Probabilistic seismic hazard analysis

In order to describe the uncertainty propagation within the pro-
posed framework, the fundamental of probabilistic seismic hazard
analysis (PSHA) is introduced in this section. PSHA is used to
quantify the exceedance probabilities of different seismic ground
motion intensities at specified engineering sites by taking various
uncertainties in seismic source, earthquake occurrence, ground
motion attenuation, and local site conditions into account
(Cornell, 1968,Mcguire, 2007).

STRUCTURE AND INFRASTRUCTURE ENGINEERING 3



There are different source models, including point source,
line source, area source, and their combinations (Cornell, 1968),
depending on the configuration of potential faults and their dis-
tances to the sites. For illustration, a point source model is
adopted in this paper. Likewise, plenty of earthquake occurrence
models have been proposed in the literature, such as Poisson
model, Markov model, and semi-Markov model (Anagnos &
Kiremidjian, 1988). As one of the most commonly used models
in practice, Poisson model is adopted here. In addition, the trun-
cated Gutenberg-Richter (G-R) law is adopted to describe the
magnitude-frequency relationship (Gutenberg & Richter, 1944).

Once an earthquake occurs, the propagation of seismic
waves from the hypocentre to an engineering site can be
described by an attenuation model that relates the ground
motion intensity to several seismological parameters, such as
the earthquake magnitude, focal distance, and local site con-
dition (Campbell, 2003, Boore & Atkinson, 2008, Bozorgnia,
Hachem, & Campbell, 2010). For illustration, the Campbell
attenuation model (Campbell, 2003) is adopted in this
paper. Furthermore, the correlation between the logarithmic
ground motion intensities at different sites owing to the
same seismic source can be modelled by an exponential
function (Wang & Takada, 2005):

qi, j ¼ exp ð�ki� jk=LcÞ (10)

where ki� jk denotes the distance between site i and site j;
Lc denotes the correlation length, its value depends on the
physical property of the region under investigation.

Now, given an earthquake with moment magnitude MW ¼
m, the conditional joint probability density function (PDF) of
the correlated logarithmic ground motion intensities at N sites
can be described by a multi-variate normal distribution:

fIðyjmÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞN jRðmÞj

q
� exp � 1

2

�
y � lðmÞ

�T
R�1ðmÞ

�
y � lðmÞ

�� �
(11)

lðmÞ ¼
l1ðmÞ

..

.

lNðmÞ

0
BB@

1
CCA,

RðmÞ ¼
q1, 1r1ðmÞr1ðmÞ � � � q1,Nr1ðmÞrNðmÞ

..

. ..
.

qN, 1rNðmÞr1ðmÞ � � � qN,NrNðmÞrNðmÞ

0
BB@

1
CCA
(12)

where liðmÞ and riðmÞ are the mean value and standard
deviation of the logarithmic ground motion intensity at site

i, respectively, which can be estimated according to
Campbell (2003).

Finally, the joint PDF of the logarithmic ground motion
intensities can be obtained as follows:

fIðyÞ ¼
ðMu

M0

fIðyjmÞfMðmÞdm (13)

where M0 and Mu denote the lower bound and upper bound
of moment magnitude, respectively; fMðmÞ denotes the PDF
of moment magnitude, which can be derived from the G-R
law. Note that the Campbell attenuation model is considered
to be valid for estimating ground motion intensities for a
hard-rock site. For other site conditions, the estimates need
to be modified using empirical or theoretical site factors.

4. LCC-based Markovian decision framework

This section is divided into three parts: (1) definition of
bridge states and restoration actions; (2) estimation of direct
and indirect economic costs; (3) computation of state transi-
tion probabilities.

4.1. Definition of bridge states and restoration actions

For a group of bridges, its state space can be expressed as
the Cartesian product of the state spaces of individual
bridges. The same holds for its action space. In this paper,
the state of a bridge is determined by its earthquake-resist-
ant level as well as the damage state. The design response
spectrum for buildings is determined by the pseudo-spectral
accelerations (PSA) at short periods and 1-sec period associ-
ated with the risk-adjusted maximum considered earthquake
(MCER) in the U.S. (ASCE, 2017). In addition, it is sug-
gested that the collapse probability of a building due to the
MCER be limited to 10% on average (FEMA, 2009). In view
of this, the collapse probability under the MCER is taken as
a measure of the earthquake-resistant capacity of a bridge.
Without loss of generality, the MCER at 1-sec period is
adopted. In addition, five earthquake-resistant levels (I, II,
III, IV, V) have been defined, corresponding to collapse
probabilities of 20%, 10%, 5%, 2.5%, and 1.25%, respectively.
It is noted that the number of optional earthquake-resistant
levels and the corresponding collapse probabilities are quite
flexible. They can be adjusted without difficulty according
to the problem at hand.

Five damage states are defined for bridges in Hazus-MH
(FEMA, 2010): none (ds1), slight (ds2), moderate (ds3),
extensive (ds4), and complete (ds5). Based on the five dam-
age states and the five earthquake-resistant levels, a total of
25 bridge states are defined, as listed in Table 1. Given a
bridge state after an earthquake, the optional restoration
actions are denoted by the corresponding post-decision
states. Although an action space can be complicated, say by
considering damage accumulation or structural retrofit, it is
designed to be quite simple in the present paper for illustra-
tion. More specifically, when a bridge collapses in an earth-
quake, it will be rebuilt in accordance with one of the five
earthquake-resistant levels; otherwise, it is restored to its

Table 1. Numbering of bridge states.

Damage state

ds1 ds2 ds3 ds4 ds5
Earthquake-resistant level I S1,1 S1,2 S1,3 S1,4 S1,5

II S2,1 S2,2 S2,3 S2,4 S2,5
III S3,1 S3,2 S3,3 S3,4 S3,5
IV S4,1 S4,2 S4,3 S4,4 S4,5
V S5,1 S5,2 S5,3 S5,4 S5,5
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intact state. Hence, performance upgrading is not consid-
ered in these cases, which is usually the case in practice due
to limited budget. The feasible post-decision states corre-
sponding to different states are list in Table 2.

4.2. Estimation of direct and indirect economic costs

The costs in Equation (3) include direct economic cost for
restoration as well as indirect economic cost due to travel-
time delay. Given a damage state, the direct economic cost
for restoring the bridge is the product of the initial con-
struction cost and the damage ratio. The damage ratio cor-
responding to a damage state is the fraction of the
restoration cost to the initial construction cost. The best
estimates of the damage ratios used here are referred to
Hazus-MH (FEMA, 2010). The initial construction cost of a
bridge depends on its earthquake-resistant capacity, which is
reasonable, since constructing a bridge of higher earth-
quake-resistant capacity requires more material and Labour.
The relationship between the initial construction cost and
the earthquake-resistant capacity is modelled by an empir-
ical exponential function proposed by Ang and De Leon
(1997):

Cini, k ¼ Cini, ref � exp
�
a �
�
1� ðPf , k=Pf , ref Þb

��
; k ¼ 1, 2, 3, 4, 5

(14)

where Pf , k, k¼ 1, 2, 3, 4, 5 denote the collapse probabilities
corresponding to the five earthquake-resistant levels I, II,
III, IV, and V, respectively, as given in the previous section;
Cini, k, k¼ 1, 2, 3, 4, 5 denote the five initial construction
costs; Pf , ref and Cini, ref are the collapse probability and ini-
tial construction cost of a reference design, which is simply
taken as level I; a and b are set to 1.2 and 0.3, respectively,
and the corresponding exponential function is depicted in
Figure 1.

The indirect economic cost is assumed to be proportional
to the travel-time delay experienced by travellers due to traf-
fic disruption during the post-earthquake restoration pro-
cess. The delay is usually expressed as the increase of total
travel time (Furuta, Frangopol, & Nakatsu, 2011), as follows:

Cind ¼ g
XM
i¼1

�
Lpeak

X
a2A

�
xðiÞa tðiÞa � ~xa~ta

��
di (15)

where M denotes the number of restoration stages; di
denotes the duration of stage i; A denotes the set of all the
links in the network; ~xa and ~ta denote the traffic flow and
travel time on link a in the normal condition, while xðiÞa and
tðiÞa denote the traffic flow and travel time on link a in

restoration stage i; Lpeak denotes the duration of peak traffic
in a day; g denotes the indirect economic cost coefficient,
which synthesises all the negative impacts of travel-time
delay on the society.

Given the traffic condition of a transportation network,
the traffic flows as well as the travel times on the links can
be assigned by Wardrop’s user-equilibrium (UE) model
(Wardrop, 1952), which assumes that travellers have com-
plete traffic information of the transportation network, and
each traveller tends to choose a route with the shortest
travel time. Such individual choice will eventually reach a
balance on the network level, that is, no traveller can further
shorten his or her travel time by changing the route alone.
The UE model can be expressed as the following optimisa-
tion problem:

min
xa, a2A

f
X
a2A

ðxa
0
taðxÞdxg (16)

subjected to: X
pi, j2Pi, j

qpi, j ¼ Qi, j (17)

xa ¼
X
i2V

X
j2V\j 6¼i

X
pi, j2Pi, j

da, pi, j qpi, j (18)

qpi, j � 0,8pi, j 2 Pi, j,8i 2 V, j 2 V \ j 6¼ i (19)

where ta(x) denotes the travel time on link a given a traffic
flow x, which reflects the impedance of the link; Qi,j denotes
the traffic demand between the origin-destination (O-D) pair
(i, j); V denotes the set of all the nodes in the network; Pi,j
denotes the set of all the paths between the O-D pair (i, j); qpi, j
denotes the traffic flow assigned to route pi,j from Qi,j; da, pi, j is
an indicator variable: if route pi,j consists of link a, it is equal
to 1, otherwise, it is equal to 0.

Link impedance is modelled by the widely accepted BPR
function proposed by the U.S. Bureau of Public Roads here,
as follows:

Table 2. Optional post-decision states of a bridge.

Post-earthquake state Post-decision state

S1,1, S1,2, S1,3, S1,4 S1,1
S2,1, S2,2, S2,3, S2,4 S2,1
S3,1, S3,2, S3,3, S3,4 S3,1
S4,1, S4,2, S4,3, S4,4 S4,1
S5,1, S5,2, S5,3, S5,4 S5,1
S1,5, S2,5, S3,5, S4,5, S5,5 S1,1, S2,1, S3,1, S4,1, S5,1

Figure 1. Exponential function model.
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taðxÞ ¼ t0, a 1þ a � x
Ca

� �b
" #

(20)

where t0,a denotes the free flow travel time on link a; Ca

denotes the traffic capacity of link a; a and b are two fitting
parameters, which are taken as 0.15 and 4.0 respectively
according to the suggestion of the U.S. BPR. The optimisa-
tion problem can be solved efficiently by the Frank-Wolfe
algorithm (Leblanc, Morlok, & Pierskalla, 1975).

The procedure for estimating the indirect economic cost
is summarised below:

Step 0. Initialisation:

a. Topological information of the network;
b. O-D traffic demands;
c. Free flow travel times ft0, aga2A and traffic capacities

fCaga2A of all the links;
d. Damage states of the bridges;
e. Indirect economic cost coefficient g.

Step 1. Traffic assignment in the normal condition:

a. Set i¼ 0;
b. Calculate the traffic flows f~xaga2A and travel times

f~taga2A on all the links;

Step 2. Traffic assignment in the disrupted conditions:

a. Set i¼iþ 1;
b. According to the damage states of the bridges, discount

the traffic capacities of the corresponding links;
c. Calculate the traffic flows fxðiÞa ga2A and travel times

ftðiÞa ga2A on all the links.

Step 3. Once the restoration or rebuilding of a damaged
bridge is done, update its damage state to none.

Step 4. If all the damaged bridges have been restored or rebuilt,
go to the next step; otherwise, go back to Step 2.

Step 5. Estimate the indirect economic cost by Equation (15).

Note that some assumptions are made in this part: (1) dam-
ages of roads are neglected; (2) there are redundant minor roads
besides the main roads, which provides detour paths once the
related bridges are shut down; (3) the restoration processes of
different bridges are carried out simultaneously; and (4) travel-
time delay only happens during the period of peak traffic in the
morning and evening of each day.

4.3. Computation of state transition probabilities

Fragility curves are modelled as lognormal distribution
functions that give the probabilities of reaching or exceed-
ing different damage states for a given ground motion
intensity. For a given bridge, there are four fragility curves.
Each fragility curve is characterised by a median value and
an associated dispersion factor, as follows (FEMA, 2010):

FkðŷÞ ¼ U
1
bk

� ln ŷ
ak

� � !
, k ¼ 2, 3, 4, 5 (21)

where Uð�Þ denotes the standard normal cumulative distri-
bution function; ŷ denotes a ground motion intensity; ak
and bk denote the median value and dispersion factor of the
fragility curve corresponding to dsk.

According to the fragility curves, the probabilities that a
bridge is in one of the five damage states after experiencing
a seismic ground motion of intensity ŷ are:

Pðds1jŷÞ ¼ 1�U
1
b2

� ln ŷ
a2

� � !

Pðds2jŷÞ ¼ U
1
b2

� ln ŷ
a2

� � !
�U

1
b3

� ln ŷ
a3

� � !

Pðds3jŷÞ ¼ U
1
b3

� ln ŷ
a3

� � !
�U

1
b4

� ln ŷ
a4

� � !

Pðds4jŷÞ ¼ U
1
b4

� ln ŷ
a4

� � !
�U

1
b5

� ln ŷ
a5

� � !

Pðds5jŷÞ ¼ U
1
b5

� ln ŷ
a5

� � !

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(22)

According to the definition in Section 4.1, these mean
values and dispersion factors depend on the earthquake-
resistant capacity, as follows:

U
1

b1, 5
� ln ŷ�

a1, 5

� � !
¼ 20%

U
1

b2, 5
� ln ŷ�

a2, 5

� � !
¼ 10%

U
1

b3, 5
� ln ŷ�

a3, 5

� � !
¼ 5%

U
1

b4, 5
� ln ŷ�

a4, 5

� � !
¼ 2:5%

U
1

b5, 5
� ln ŷ�

a5, 5

� � !
¼ 1:25%

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

(23)

where ŷ� denotes the PSA at 1-sec period corresponding to
the MCER. Note that there are two subscripts to the median
values and dispersion factors hereinafter. The first one indi-
cates the earthquake-resistant level of the bridge, while the
second one indicates the damage state.

According to Hazus-MH (FEMA, 2010), the disper-
sion factor is set to 0.6 for bridges. Thus, the five
median values of complete damage can be determined
from Equation (23):
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a1, 5 ¼ ŷ�

exp
�
0:6 � U�1ð20%Þ

�
a2, 5 ¼ ŷ�

exp
�
0:6 � U�1ð10%Þ

�
a3, 5 ¼ ŷ�

exp
�
0:6 � U�1ð5%Þ

�
a4, 5 ¼ ŷ�

exp
�
0:6 � U�1ð2:5%Þ

�
a5, 5 ¼ ŷ�

exp
�
0:6 � U�1ð1:25%Þ

�

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

(24)

Further, it is assumed that the ratios between the median
values of different damage states are independent of the
earthquake-resistant capacity of the bridge. That is:

f
½a1, 2, a2, 2, a3, 2, a4, 2, a5, 2� ¼ v2, 5 � ½a1, 5, a2, 5, a3, 5, a4, 5, a5, 5�
½a1, 3, a2, 3, a3, 3, a4, 3, a5, 3� ¼ v3, 5 � ½a1, 5, a2, 5, a3, 5, a4, 5, a5, 5�
½a1, 4, a2, 4, a3, 4, a4, 4, a5, 4� ¼ v4, 5 � ½a1, 5, a2, 5, a3, 5, a4, 5, a5, 5�

(25)

where ðv2, 5, v3, 5, v4, 5Þ are the fixed ratios. Note that in-
depth studies need to be carried out in order to obtain
more reliable fragility curves.

The state transition probabilities involved in Equation (4)
can be computed by combining PSHA and fragility analysis.
Firstly, for a single bridge, the non-zero conditional state
transition probabilities are:

PðSk, 1jSk, 1, ŷÞ ¼ 1�U
1

bk, 2
� ln ŷ

ak, 2

� � !

PðSk, 2jSk, 1, ŷÞ ¼ U
1

bk, 2
� ln ŷ

ak, 2

� � !
�U

1
bk, 3

� ln ŷ
ak, 3

� � !

PðSk, 3jSk, 1, ŷÞ ¼ U
1

bk, 3
� ln ŷ

ak, 3

� � !
�U

1
bk, 4

� ln ŷ
ak, 4

� � !

PðSk, 4jSk, 1, ŷÞ ¼ U
1

bk, 4
� ln ŷ

ak, 4

� � !
�U

1
bk, 5

� ln ŷ
ak, 5

� � !

PðSk, 5jSk, 1, ŷÞ ¼ U
1

bk, 5
� ln ŷ

ak, 5

� � !

, k ¼ 1, 2, 3, 4, 5

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

(26)

For a group of bridges, the conditional state transition
probabilities are products of the individual components, as
follows:

P
��

Sqð1Þ,rð1Þ, :::,SqðNÞ,rðNÞ
�
j
�
Sqð1Þ,1,:::,SqðNÞ,1

�
,ðŷ1, :::, ŷNÞ

�

¼
YN
j¼1

P
�
SqðjÞ,rðjÞjSqðjÞ,1, ŷj

�
(27)

where N denotes the number of bridges; q(j) and r(j) denote
the earthquake-resistant level and damage state of bridge j,
respectively. Note that the correlation between the seismic
damages is ignored in this paper for simplicity. However, it
is not difficult to consider such correlation as long as
enough data on the bridges (e.g., maintenance and retrofit
schedules, construction methods, and traffic loads, etc.) is

available (Ghosh, Rokneddin, Padgett, & Due~nas-Osorio,
2014, Rokneddin, Ghosh, Due~nas-Osorio, & Padgett, 2014).

Finally, by convolving the conditional state transition
probabilities with the joint PDF of the logarithmic ground
motion intensities in Equation (13), the state transition
probabilities can be obtained, as follows:

P
��

Sqð1Þ,rð1Þ, :::,SqðNÞ,rðNÞ
�
j
�
Sqð1Þ,1, :::,SqðNÞ,1

��
¼
ð
y1

� � �
ð
yN

P
��

Sqð1Þ,rð1Þ, :::,SqðNÞ,rðNÞ
�

j
�
Sqð1Þ,1,:::,SqðNÞ,1

�
,ðŷ1, :::, ŷNÞ

�
fIðy1,:::,yNÞdy1 � � �dyN

8qðjÞ,rðjÞ2f1,2,3,4,5g, j¼1,:::,N

(28)

where ðŷ1, :::, ŷNÞ are obtained by taking the exponents of
ðy1, :::,yNÞ, followed by site adjustment according to the soil
conditions (ASCE, 2017).

Monte Carlo simulation is employed to solve this com-
plex integral. The procedure is as follows:

Step 0. Initialisation:

a. Three parameters in the truncated G-R model: M0, Mu,
and b;

b. Attenuation coefficients c1	c13 in the Campbell model;
c. Locations of the potential seismic source and the

bridges, and the empirical correlation length;
d. Site conditions;
e. Set PððSqð1Þ, rð1Þ, :::, SqðNÞ, rðNÞÞjðSqð1Þ, 1, :::, SqðNÞ, 1ÞÞ ¼ 0, for

8qðjÞ, rðjÞ 2 f1, 2, 3, 4, 5g, j ¼ 1, :::,N:

Step 1. Sampling of magnitude:

Generate N1 samples of magnitude fmigN1
i¼1 from the dis-

tribution fMðmÞ:

Step 2. Sampling of ground motion intensities:

a. For each magnitude sample mi, obtain the correspond-
ing conditional joint PDF f ðyjmiÞ, and generate
N2 samples;

b. Take the exponents of the logarithmic ground motion
intensities, and adjust their values according to the site
conditions, giving a total of N1N2 samples of adjusted

ground motion intensities fðŷ1, :::, ŷNÞkgN1N2

k¼1

Step 3. Update of state transition probabilities:

For each sample of adjusted ground motion inten-
sities ðŷ1, :::, ŷNÞk, k ¼ 1, :::,N1N2 :

a. Compute the conditional state transition probabilities of
each bridge;

b. Compute the conditional state transition probabilities of
the bridge group;
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c. Update the state transition probabilities as follows:

P0
��

Sqð1Þ, rð1Þ, :::, SqðNÞ, rðNÞ
�
j
�
Sqð1Þ, 1, :::, SqðNÞ, 1

��
¼ P

��
Sqð1Þ, rð1Þ, :::, SqðNÞ, rðNÞ

�
j
�
Sqð1Þ, 1, :::, SqðNÞ, 1

��
þ 1
N1N2

P
��

Sqð1Þ, rð1Þ, :::, SqðNÞ, rðNÞ
�

j
�
Sqð1Þ, 1, :::, SqðNÞ, 1

�
, ðŷ1, :::, ŷNÞk

�
8qðjÞ, rðjÞ 2 f1, 2, 3, 4, 5g, j ¼ 1, :::,N

(29)

5. Case study: a hypothetical transportation network

5.1. Profile of the network

A hypothetical transportation network is investigated, as
illustrated in Figure 2, where N1	N10 are centroids of

different traffic analysis zones (TAZ), L1	L18 are two-way
roads, B1 and B2 are bridges of the same configuration, and
Ep is the epicentre of the potential earthquake source. The
lengths, traffic capacities, and peak traffic flows of the roads
are listed in Table 3. The peak O-D traffic demands between
the TAZs are given in Table 4.

The epicentre is assumed to be 30 km away from the two
bridges, with a focal depth of 20 km. The lower bound and
upper bound of moment magnitude are taken as M0¼5.0 and
Mu¼8.5, with a mean occurrence period of 20 years. The b-
value in the truncated G-R model is set to 0.8 (Petersen et al.,
2008). The MCER at 1-sec period is assumed to be 0.6 g. The
attenuation coefficients c1	c13 is referred to Campbell (2003).
The site condition of both bridges is assumed to be Class C.
The ratios in Equation (25) are set to v2, 5 ¼ 0:35=0:80, v3, 5 ¼
0:45=0:80, and v4, 5 ¼ 0:55=0:80, respectively. The corre-
sponding fragility curves are depicted in Figure 3.

The discount rate is assumed to be 4%. The initial con-
struction cost of a bridge of earthquake-resistant level I is

Figure 2. Hypothetical transportation network.

Table 3. Information of roads.

Road ID L1 L2 L3 L4 L5 L6 L7 L8 L9
Length (km) 8 5 5 6 6 5 5 8 8
Capacity (pcu/h) 1000 2000 2000 2000 2000 3000 3000 1000 3000
Peak flow (pcu/h) 300 1275 1275 825 825 2325 2325 450 2550

Road ID L10 L11 L12 L13 L14 L15 L16 L17 L18
Length (km) 8 8 5 5 6 6 5 5 8
Capacity (pcu/h) 3000 1000 3000 3000 2000 2000 2000 2000 1000
Peak flow (pcu/h) 2550 450 2325 2325 825 825 1275 1275 300

Note: pcu is abbreviation for passenger car unit.

Table 4. Peak O-D traffic demands (pcu/h).

Destination node

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10
Origin node N1 – 300 750 300 300 150 150 150 150 150

N2 300 – 750 300 300 150 150 150 150 150
N3 750 750 – 750 750 150 150 1500 150 150
N4 300 300 750 – 300 150 150 150 150 150
N5 300 300 750 300 – 150 150 150 150 150
N6 150 150 150 150 150 – 300 750 300 300
N7 150 150 150 150 150 300 – 750 300 300
N8 150 150 1500 150 150 750 750 – 750 750
N9 150 150 150 150 150 300 300 750 – 300
N10 150 150 150 150 150 300 300 750 300 –
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assumed to be $3.0M, and the best estimates of the damage
ratios are taken as 0.03, 0.08, 0.25, and 1.00 for slight, mod-
erate, extensive, and complete damage, respectively (FEMA,
2010). The restoration durations are assumed to be 1 day,
5 days, 90 days, and 360 days, respectively (FEMA, 2010).
The daily duration of peak traffic is assumed to be 4 hrs.
Note that although the costs and durations are random in
practice, they are represented by deterministic values for

simplicity in this study. For L9 or L10, the traffic capacity
remains unchanged when B1 or B2 is slightly or moderately
damaged, and a residual capacity of 30% is assumed owing
to the existence of redundant routes when B1 or B2 is
extensively or completely damaged.

An indirect economic cost coefficient of 82 yen/car/min
(about 45 USD/pcu/hr) was adopted by Furuta et al. (2011).
However, its value heavily depends on the economic devel-
opment level of the region studied, and thus highly uncer-
tain. Likewise, the value of the correlation length in
Equation (10) is difficult to decide as well. In view of this,
sensitivity analyses in terms of these two parameters have
been carried out.

5.2. Results and discussion

Six cases described in Table 5 are considered, and the opti-
mum earthquake-resistant level of B2 is focussed on without
loss of generality. First, the optimum policy corresponding

Figure 3. Fragility curves.

Table 5. Post-earthquake states in different cases.

Case 1 B1: earthquake-resistant level I, extensive damage
B2: complete damage

Case 2 B1: earthquake-resistant level II, extensive damage
B2: complete damage

Case 3 B1: earthquake-resistant level III, extensive damage
B2: complete damage

Case 4 B1: earthquake-resistant level IV, extensive damage
B2: complete damage

Case 5 B1: earthquake-resistant level V, extensive damage
B2: complete damage

Case 6 B1: complete damage
B2: complete damage
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to an indirect economic cost coefficient of 60 USD/pcu/hr
and a correlation length of 30 km is obtained by the pro-
posed approach, as depicted in Figure 4. It is observed that
the optimum earthquake-resistant level for rebuilding B2
depends on the earthquake-resistance level of B1. To be spe-
cific, if B1 had been designed according to a high standard,

then it is sufficient to rebuild B2 to a relatively low level,
and vice versa. When both bridges are completely damaged
(Case 6), it is suggested that they be rebuilt to a moderate
earthquake-resistance level.

In order to demonstrate the advantage of the optimum
policy, it is compared with five ‘state-independent’ policies
in terms of the LCC of the whole transportation network, as
shown in Figure 5. Policy I suggests that B2 (both bridges
in Case 6) be rebuilt to earthquake-resistant level I in each
case, and so on for the other four policies. The relative
increases of the LCCs compared to the optimum values are
depicted in Figure 5. Note that the indirect economic costs
incurred at the current stage are excluded from the LCCs
since they are the same for different policies. It is found
that these policies lead to higher LCCs than the optimum
policy. In particular, Policy I is extremely risky when the
other bridge is not strong enough.

Next, for a given correlation length of 30 km, the sensi-
tivity analysis in terms of the indirect economic cost coeffi-
cient is carried out. Depicted in Figure 6 are the optimum
policies corresponding to five different indirect economic
cost coefficients ranging from 40 to 80 USD/pcu/hr. It is
found that the optimum decisions in Case 2 and Case 3 are
more sensitive than those in the other cases. Similarly, the
sensitivity analysis with respect to the correlation length for
a given indirect economic cost coefficient of 60 USD/pcu/hr
is also conducted. The optimum policies corresponding to
five different correlation lengths ranging from 10 km to
50 km are depicted in Figure 7. It is noticed that the opti-
mum decision in each case is insensitive to the correlation
length within the above range. Therefore, in spite of its sig-
nificant uncertainty, it is acceptable to regard the correlation
length as a deterministic value.

Finally, the effect of network topology on the optimum
policy is studied by adding a two-way road between N5 and
N6. Three plans are considered, corresponding to the traffic
capacity C�¼500, 1000, and 1500 pcu/hr, respectively, and
the results are depicted in Figure 8 (g¼ 80 USD/pcu/hr,

Figure 4. Optimum earthquake-resistant levels of B2.

Figure 5. Relative LCC increases under different policies.

Figure 6. Optimum earthquake-resistant levels of B2 corresponding to differ-
ent g.

Figure 7. Optimum earthquake-resistant levels of B2 corresponding to different
Lc.
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Lc¼30 km). Note that C�¼0 denotes the original topology.
It can be seen that an extra road between the left ‘island’
(N1	N5) and the right ‘island’ (N6	N10) of the network sig-
nificantly lowers the requirement for the earthquake-resist-
ant level of B2, since it increases the redundancy of the
network. As its traffic capacity increases, the optimum
earthquake-resistant level gradually declines. The same holds
for B1.

6. Conclusions

An LCC-based CTMDP framework for determining opti-
mum earthquake-resistant levels of bridges in a transporta-
tion network is proposed in this paper. It is an extension to
the previous LCC-based optimisation methods in two
respects: (1) bridges are coupled by network-level traffic
flow analysis; (2) decisions are made sequentially at time
points of earthquake occurrence. It is found that the opti-
mum earthquake-resistant level for rebuilding a completely
damaged bridge depends on the capacities of other bridges
in the network, which accords with our understanding of
the BBB principles. That is, the functional coupling of
bridges should be considered in the process of post-earth-
quake restoration in order to build an optimum bridge
inventory in the sense of network-level LCC.

Sensitivity analyses in terms of the indirect economic
cost coefficient and correlation length have been performed
in the case study. A preliminary conclusion is that the value
of the indirect economic cost coefficient affects the opti-
mum policy remarkably, while the value of the correlation
length has little influence on the final result. In addition,
the impact of the network topology on the optimum policy
is also investigated. As expected, the traffic redundancy of a
transportation network plays an important role in deciding
the requirement for the earthquake-resistant levels of the
bridges it contains.

A major drawback of MDP lies in the exponential expan-
sion of the computational cost with the number of bridges
involved (curse of dimensionality), which hinders the

application of the proposed methodology in real problems.
In view of this, it is required that approximate solving algo-
rithms of high efficiency be adopted. Although plenty of
advanced algorithms have been proposed in the literature,
such as reinforcement learning and approximate dynamic
programming, their performance (efficiency vs. accuracy)
within the proposed framework needs to be further testified.
Finally, it is also necessary to further integrate the uncer-
tainties of some critical parameters (e.g., indirect economic
cost coefficient and restoration durations), as well as the
mechanism of progressive deterioration into the framework.
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