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Abstract
The objective scaling ensemble approach is a novel two-phase heuristic for integer
linear programming problems shown to be effective on a wide variety of integer linear
programming problems. The technique identifies and aggregates multiple partial solu-
tions to modify the problem formulation and significantly reduce the search space. An
empirical analysis on publicly available benchmark problems demonstrate the efficacy
of our approach by outperforming standard solution strategies implemented in modern
optimization software.

Keywords Integer programming · Heuristics · Neighborhood search

1 Introduction

Integer programming (IP) is a fundamental approach to NP-hard combinatorial prob-
lems that arise in wide range of application areas including production, scheduling,
finance, network design, and others (Nemhauser and Wolsey 1988; Zhang and Wang
2017; Zhang et al. 2018; Zhang and ZHAO 2010; Zhang and Nicholson 2016a; Zhang
and Yao 2010; Zhang et al. 2017; Zhang and Wang 2016). There are both linear and
non-linear formulations of IP problems. In this investigation we focus on the former.
Broadly defined, an mixed integer linear program (MILP) aims at optimizing a lin-
ear objective function (without loss of generality we assume minimization) subject to
a set of linear equality/inequality constraints over real and integer/binary variables.
Borrowing notation from Fischetti and Lodi (2003), we define the MILP problem as

(ILP) min z(x) = cT x (1)

Ax ≥ b (2)

x j integer ∀ j ∈ G (3)
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x j ∈ {0, 1} ∀ j ∈ B (4)

x j ≥ 0 ∀ j ∈ N . (5)

Here, c is an n-dimensional vector of costs, x is an n-dimensional vector of decision
variables, A is anm×n constraint matrix, b is anm-dimensional vector of parameters,
and N is a set of variable indices {1 . . . n} partitioned into three sets, N = {B,G, C}
associated with binary, integer, and continuous variables, respectively. If C and I =
{B,G} are non-empty, the problem is amixed integer linear program (MILP). If C = ∅
and G �= ∅, the problem is a pure integer problem. If C and G are empty, but B �= ∅,
it is a binary programming (BP) problem. If G is empty, but C and B are not, it is
a mixed binary problem (MBP). Finally, if I is empty, the problem is not an integer
problembut a linear programming (LP) problem.Various IP solution approaches entail
temporarily removing the integrality constraints in (3) and (4) solving the associated
LP relaxation.

Commercial MILP solvers, such as CPLEX and Gurobi used in both academia and
industry, leverage branch-and-bound and cutting planes algorithms with linear pro-
gramming relaxation to find exact optimal solution (Lodi 2010). Due to the time and/or
resource complexity of finding exact MILP solutions, there is value in obtaining near-
optimal solutions to such problems quickly. A large body of research has been directed
towards finding solution approaches applicable to particular subclasses ofMILP prob-
lems, e.g. fixed-charge network flow problems (Bertsimas and Sim 2003), network
design (Crainic et al. 2000), vehicle routing (Gulczynski et al. 2011), and scheduling
(Hoffman andPadberg 1993; van denAkker et al. 2000;Beliën 2007).General-purpose
MILP solution approaches on the other hand include “pivot and complement” for BP
problems (Balas and Martin 1980), “pivot and shift” for MILP problems (Balas et al.
2004), “pivot, cut and dive” (Eckstein and Nediak 2007), OCTANE for BP problems
(Balas et al. 2001), relaxation induced neighborhood search (RINS) (Danna et al.
2005), local branching (Fischetti and Lodi 2003), feasibility pump (Fischetti et al.
2005; Achterberg and Berthold 2007; Bonami et al. 2009), and others (Blum and Roli
2003; Patel and Chinneck 2007). Approximate solutions may be of sufficient qual-
ity to stand on their own or be used in combination with an exact procedure to find
feasible solutions. Modern solvers incorporate many heuristics as part of the overall
optimization strategy to improve time to solution (Linderoth and Lodi 2010).

In this paper, we introduce an heuristic technique and basic framework suitable
for a wide variety of MILP problems. This algorithm, which we call the ensemble
approach (OSEA), is inspired by RINS (Danna et al. 2005) and slope scaling (Kim and
Pardalos 1999) techniques. Section 2 reviews these techniques, explains themotivation
ofOSEA, and formally defines the framework. Section 3 describes the problem testbed
and reports the computational results. We summarize the work in Sect. 4.

2 Objective scaling ensemble approach

2.1 Motivation

Relaxation induced neighborhood search (Danna et al. 2005) is one of several heuris-
tic techniques used in conjunction with exact solution approaches to MILP problems.
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Branch-and-bound (or branch-and-cut) explore theMILP solution space by iteratively
fixing one or more integer variables (a partial solution) and solving the remaining sub-
problem as a linear relaxation. The partial solutions are typically referred to as nodes
in the search tree. The best integer feasible solution found during the process is called
an incumbent solution and is updated whenever a better feasible solution is found.
The process is iterated until the entire solution space has been implicitly examined
and a provably optimal solution is found (assuming a feasible solution exists). Many
heuristic search techniques, on the other hand, search a neighborhood, a local space
“close” to a particular point within the solution space (as defined by some distance
measure), to find improved solutions, e.g. local branching (Fischetti and Lodi 2003),
tabu search (Glover and Laguna 1999), simulated annealing (Kirkpatrick et al. 1983),
and machine learning (Zhang and Nicholson 2016b; Nicholson and Zhang 2016) See
Gendreau and Potvin (2010) for an excellent resource regarding a wide variety of
metaheuristic techniques. The local search is then repeated based on the neighbor-
hood of the improved solution. Neighborhood search procedures are often terminated
based on some pre-specified criteria and do not guarantee the global optimality of
the final solution. Climer and Zhang (2006) proposed a search strategy, a.k.a. cut-and-
solve, which is proved to find optimal solution and termination without using common
branching. The authors have demonstrated the performance on Asymmetric Traveling
Salesman Problem.

RINS employs information from the branch-and-bound process to form a search
neighborhood of an incumbent feasible solution. The intuition is that some subset
of variables in a linear relaxation for a given search node will share values with the
current incumbent solution. The variables which do agree are fixed to their incumbent
values. The solution space for the resulting subproblem defines the neighborhood of
the incumbent and this space is searched using an exact technique. Any integer feasible
solution found is a globally feasible solution and possibly will improve the incumbent
solution. The sub-IP problem is potentially large and some stopping criterion is used
to terminate the local search. The master branch-and-bound process is resumed with a
potentially improved incumbent. RINS can be employed at any search node. At each
node the LP relaxation may result in a different solution and thus the overall search is
diversified.

Slope-scaling, and in particular the dynamic slope scaling procedure (DSSP) (Kim
and Pardalos 1999), was originally designed for the fixed-charge network flow (FCNF)
problems and has been applied to a various problem types including the piecewise
linear network flow problem (Kim and Pardalos 2000), the multicommodity fixed-
charge network problem (Crainic et al. 2004), the multicommodity location problem
(Gendron et al. 2003), theminimum toll booth problem (Bai et al. 2010), and stochastic
integer programming (Shiina and Xu 2012). With respect to the original application,
DSSP employs a series of linearizations of the FCNF discontinuous objective function
in (6),

min
∑

(i, j)∈A

(ci j xi j + fi j yi j ) (6)
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where A is the set of arcs in the network, x is a vector of continuous arc flow values, y is
a vector of binary decision variables, and the cost vectors c and f are the unit flow costs
and fixed costs, respectively. DSSP removes the binary variables y from the objective,
iteratively scales the fixed cost f and adds them to the variable flow cost c. Similar to
RINS, OSEA uses information from linearized formulations to form a smaller search
space. The relaxation formulation differs from RINS in that the relaxation is not based
on a search node (partial solution), but based on a series of slope-scaling inspired
relaxations.

OSEA defines the search space based on variable agreement between (i) an incum-
bent solution andoneormore solutions of the linearized formulations (i.e., an ensemble
of solutions) or (ii) entirely from agreement between solutions in the ensemble. Solu-
tion ensembles have been exploited in a variety of ways such as variable fixing based
on value agreement among solutions (e.g., as in RINS) or “voting” among the solu-
tions (e.g., 4 of 5 solutions have variable x1 = 17). The latter is commonly employed
in the field of statistical learning (e.g., Breiman 1996). OSEA takes a relatively con-
servative approach in using the ensemble to define a sub-MIP problem to be solved
exactly.

2.2 OSEA framework

In many instance of large, real-world IP problems, only a small percentage of the
integer variables have non-zero values in the optimal solution. It is worth noting
that among the larger MILP instances available in the IP benchmark problem library
MIPLIB 2010 (Koch et al. 2011), the relative number of non-zero integer variables in
the optimal solutions is very low. Table 1 shows the summary statistics (minimum, first
quartile, median, mean, third quartile, and maximum) for the percentage of integer
variables used in the optimal solution for the 36 MIPLIB 2010 solved problems that
have at least 10,000 integer variables. The median is 1.3% and 75% of the optimal
solutions use less than 2.89% of the possible integer variables. Motivated by this
feature of IP problems, OSEA attempts to eliminate integer variables from the problem
formulation and the ensemble aggregation method for OSEA is designed with this
characteristic in mind.

Let E = {s1, s2, . . . , sk} denote an ensemble of k solutions (possibly including
infeasible solutions) to an MILP problem. The set of solutions may be generated
through slope-scaling techniques, LP relaxations, known feasible solutions, accumu-
lating incumbent solutions in a branch-and-bound algorithm, or other methods. In
particular, OSEA fixes the j th integer variable to 0 if for all solutions s ∈ E , the j th
variable, s j , equals 0. That is,

Table 1 Integer variables used in large MIPLIB instances

Min (%) Q1 (%) Median (%) Mean (%) Q3 (%) Max (%)

0.01 0.28 1.30 3.69 2.89 34.41

123



Objective scaling ensemble approach for integer linear…

x j ←
{
Fix to 0 if s j = 0 ∀s ∈ E
Do not fix otherwise

∀ j ∈ I.

The integer variables which are left open in the corresponding sub-MIP problem form
a reduced search space. An exact search of the reduced problem space produces the
OSEA solution and objective.

It is important to note that the ensemble does not necessarily consist of high quality
solutions to the original problem. In fact, from initial testing we place a priority
on diversity of quality. If the solutions in E are diverse, then the variables that are
unused by every solution in the ensemble share at least one characteristic: they are
each “unattractive” to a wide range of solutions. Since OSEA fixes variables to 0,
by allowing poorer quality solutions in the ensemble, we take a more conservative
approach. That is, only variables that are not used among a variety of solutions (e.g.,
good, median, poor) are discarded.

Moreover, if a given integer variable is not used in a linearized optimal solution
when the cost is adjusted to a fraction of its original cost, then the intuition is that the
integer variable is not likely useful in the original problem.The absolute cost associated
with a variable is not as important as the cost relative to other variables. The iterative
scheme in slope-scaling techniques and in OSEA updates individual variable costs
throughout the process. This update scheme dynamically affects the relative costs of
the variables. Variables which may be too costly to use in a linearized solution during
the earlier iterations may become cost-effective in the latter ones.

The ensemble E must be populated with solutions or partial solutions. For OSEA,
this is primarily accomplished in the objective scaling iteration phase. The scaling
process is now described.

OSEA scales the coefficients of the discrete variables and iteratively solves the
relaxed problem (7),

(LPn) min zLPn (x) =
∑

j∈C
c j x j +

∑

j∈I
c̄nj x j

Ax ≥ b

0 ≤ x j ≤ 1 ∀ j ∈ B
x j ≥ 0 ∀ j ∈ N

(7)

where c̄nj for j ∈ I is the scaled cost coefficient of the integer variable. Let x̃n denote
the solution to LPn . Intuitively, the scaling factor can be used to effectively reflect the
linear factor of the current objective function. It is updated to the latest marginal fixed
cost based on the current statuses of the corresponding positive variable and will stay
the same when it reaches the break-even point (a concept of economic viewpoint).
This solution is used to update the integer coefficient for the next iteration n + 1 as
follows,

c̄n+1
j ← c j

x̃nj + 1
∀ j ∈ {I : x̃nj > 0} (8)
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Note in DSSP, the fixed cost value is scaled by 1/x̃nj , however there are two benefits
that result from modifying this for general application. First, since MILP problems
may have negative integer variable cost coefficients, as the relaxed solution approaches
0, the scaled costs may approach negative infinity,

lim
x̃nj →0

−1

x̃nj
= −∞

and a counterintuitive result ensues, namely the attractiveness of the variable increases
without bound as the value of the variable decreases. This effect is bounded by a simple
modification of the denominator in Eq. 8.And secondly, the resulting bound is intuitive

lim
x̃nj →0

c j
x̃nj + 1

= c j .

Slope-scaling dynamically modifies the costs of different variables throughout the
search process to alter their relative attractiveness in the relaxations. While it is true
that modification in Eq. (8) impacts the appealing characteristic of the final iteration
N of DSSP in which the scaled objective value reflects the true solution cost (i.e., it
includes the full fixed cost incurred in the corresponding network flow solution),

∑

j∈C
c j x̃

N
j +

∑

j∈I
c̄Nj [x̃ Nj > 0]

where [xNj > 0] denotes the Iverson bracket which returns a 1 if xNj > 0 and 0,
otherwise. However, this outcome is not critical to the success of DSSP. That is, the
best solutions from DSSP are not necessarily found in the final iteration (Nahapetyan
and Pardalos 2008). At earlier iterations n < N , the scaled fixed costs do not represent
the true value:

∑

j∈I
c̄nj x̃

n
j �=

∑

j∈I
c̄Nj [x̃ Nj > 0].

This suggests that the search path induced by the procedure is of more importance
than the objective value of the final iteration.

The integer variable cost coefficients are initialized to a fraction of the original cost
by scaling by the inverse of the relatively large value M ,

M =
∑

j∈I
|c j |.

Thus,

c0j ← c j
M

∀ j ∈ I
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and the update scheme is then,

cnj =
⎧
⎨

⎩

c j
x̃n−1
j +1

if x̃n−1
j > 0

cn−1
j otherwise

∀ j ∈ I.

In the objective scaling phase of OSEA there are N > 0 iterations and consequently
N linearized solutions: a subset of which will be added to the ensemble E . For large N ,
the number of different solutions that could be added toE is also large. If |E | is too large,
the reduced search space is potentially too large for practical purposes. Therefore, we
select a subset of the iterated linear solutions to be added to the ensemble. Let S denote
this subset. On the other hand, if |E | is too small or if it does not contain sufficient
diversity, then there may be insufficient options in the search space to generate good
solutions to the original MILP. A number of possible strategies can be designed to
build the set S. We devise one such possible strategy to emphasize ensemble diversity
in Sect. 3.

If the ensemble E does not contain a feasible solution then OSEA may or may
not produce a feasible solution. However, if a feasible solution is included in E then
OSEA is guaranteed to find a feasible solution in the reduced search space. In our
implementation of the framework, we take a hybrid approach in which we utilize
the already existing pre-processing, heuristics, and branch-and-cut algorithms readily
available in commercial software such as Gurobi and CPLEX to briefly search for
a feasible solution that can be added to E . This will be described in more detail in
Sect. 3.

There are multiple possible stopping criterion for OSEA. Similar to DSSP, the
iterative objective scaling phasewill stop once there are no new cost coefficient updates
for the integer variables. In some cases it might be prudent to provide an upper limit
on the total number of iterations allowed for the iterative scaling procedure. Let Nmax
denote the max allotted iterations. Additionally, since OSEA is meant as an heuristic
technique to quickly reduce the search space of complex problems, a time limit could
alsobe imposedon the scalingphase.The completeOSEA logic (including the iteration
limit, but not the time limit) is summarized in Fig. 1.

3 Computation results

3.1 Experimental design

The MIPLIB 2010 (Koch et al. 2011) is a publicly available library of pure and mixed
integer programming problem instances assembled by researchers and practitioners
over several years. This library of benchmark problems is used in evaluating soft-
ware performance of commercial solvers (Gurobi Optimization 2012). The library
contains 361 instances classified into 3 difficulty levels: 185 easy, 42 hard, and 134
open problems. The latter problem class contains the instances which have yet to be
solved optimally. The instances are further described by 8 characterizations types:
benchmarks (B) are solvable within 2 h on a PC, infeasible (I), primal (P) instances
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Data: ILP instance, Nmax

Result: zOSEA, xOSEA

begin
compute M : M ← ∑

j∈I |cj|
initialize integer costs : c0j ← cj

M
∀j ∈ I

optional: initialize E by including one or more feasible solution(s) to MILP
n ← 0
while n ≤ Nmax do

˜ xn ← solution to Problem LPn

c̄nj ←
⎧⎨
⎩

cj

x̃n−1
j + 1

) if x̃n−1
j > 0

c̄n−1
j otherwise

∀j ∈ I

if c̄nj = c̄n−1
j ∀j ∈ I then

break
n ← n+ 1

S ← a subset of {˜ x1, . . . , ˜ xN}
E ← E ∪ S

xj ←
{
fix to 0 if sj = 0 ∀s ∈ E
do not fix otherwise

∀j ∈ I

zOSEA, xOSEA ← solve reduced MILP problem

Fig. 1 Objective scaling ensemble approach for MILP problems

have the LP relaxation objective equal to the optimal objective, extra-large problems
(X), reoptimize (R) instances require a relatively long time to solve the LP relaxations,
tree (T) instances have a large number of enumeration trees, unstable (U) instances
have poor numerical properties, and challenge (C) instances which are classified gen-
erally as difficult to solve. The majority of the instances in the library also include
information relating to the problem application area (e.g. lot sizing, open pit mining,
network design, etc.)

OSEA is tested on a 170 problem subset of the 361MIPLIB problems. Since OSEA
is appropriate only for problems with integer variables in the objective function, any
problems without this characteristic are discarded (87 problems). Infeasible problems
are also eliminated from testing (22 problems). Instances which exceed the memory
capacity of our available computer equipment (23 problems) and those in which a
feasible solution was not found within 60 s are not included in the experimentation
(59 problems).

The experiments will be conducted as follows. To increase the likelihood that an
integer feasible solution is included in the ensemble E , wewill employ the existing pre-
processing and heuristic algorithms of the optimization software by attempting to solve
each problem for one second using commercially available optimization software. If a
feasible solution is found in the time limit, it will be added to the ensemble. Regardless,
the scaling phase begins and we select solutions discovered during this iterative stage
to be added to the ensemble. Based on initial testing we emphasize ensemble diversity
by including three solutions from the scaling iterations into the ensemble: the solutions
associated with the best, worst, and median MILP objective values.

Themaximum running time forOSEA including initial one second search, objective
scaling phase, and solving the reduced problems is set to 60 s. To compare the OSEA
solution quality with the state-of-the-art exact techniques, we will use the Gurobi
optimization software version 5.6.3 with a time limit of 60 s. According to the Gurobi
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product website, this solver includes 14 different MIP heuristics, 16 cutting plane
strategies, and a variety of presolve techniques (Gurobi Optimization 2014). We use
the default parameter settings forGurobiwith all heuristics activated (includingRINS).
The best objective value found using the default settings of the Gurobi optimization
software and the time to find that value are recorded. All tests are performed on a
Windows 7 64 bit machine with Intel Xeon CPU E5-1620 and 8 GB RAM with a
single thread.

OSEA is inherently dependent on an IP solver. The technique itself is used in
conjunction with a solver to reduce the IP search space. The empirical analysis will
compare the results of using OSEA with a commercial solver against using the same
commercial solver without OSEA. While the commercial solver is not being tuned
specifically for each problem, the settings are identical for the OSEA test. That is, the
only difference is the additional OSEA overhead to the commercial solver.

3.2 Experimental results

Let t pOSEA and t pstandard denote the computing time to solve problem p ∈ P using OSEA
and the standard (solver without OSEA), respectively. Similarly, the best objective
values found for problem p ∈ P denoted by z pOSEA and z pstandard, respectively. Addi-
tionally, the solution gap (ILPgap) is used to evaluate solution quality. Let Gp

X denote
the MILP gap for approach X ∈ {OSEA, standard} on problem p ∈ P ,

Gp
X = |z pbound − z pX|

|z pX| × 100%, ∀X ∈ {OSEA, standard},

where z pbound is the known optimal objective value for Easy andHard problems, and is
the linear relaxed objective value for Open instances. Note if z pX = 0, a small positive
value is added to the denominator.

Let γ denote the percentage of integer variables removed in the objective scaling
phase of OSEA. The distribution of γ depicted in Fig. 2 shows that OSEA removes a
significant percentage of integer variables for the majority of test bed. Overall, OSEA
removes an average of 61.97% of the integer variables. Reducing the MILP solution
space can lead to notable improvements in computation time.

The results are summarized in Table 2 where n equals the number of problem
instances in each cell. The detailed results for all datasets are appended in the
“Appendix” (“Appendix A, B, C”). Overall, using a paired t-test, the difference in
computing time and objective values of OSEA against the baseline are statistically
significant. Both techniques find optimal solutions for 40% of the Easy and Hard
problems, albeit the instances differ. That is, OSEA finds optimal solutions to certain
instances that the standard approach failed to find within the time limit, and vice versa.
Among the Easy and Hard problems, OSEA terminates faster than the standard tech-
nique, and while the average optimality gap is smaller for OSEA, the solution quality
differences are not significant at a 95% confidence level. For the Open problems, the
results are statistically significant: OSEA produces a higher quality solution within
the time limit and does so in less time.
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Fig. 2 Distribution of the percentage of integer variables γ

Table 2 Statistical analysis of performance by difficulty level

Difficulty n Computing time Objective value

tOSEA tstandard p-value GOSEA (%) Gstandard (%) p-value

Easy 108 19.84 41.41 < 0.0001 3.12 4.9 0.066

Hard 32 30.39 60.03 < 0.0001 8.4 12.51 0.072

Open 30 42.31 60.09 0.0004 1226.25 1227.02 0.028

Overall 170 25.26 47.99 < 0.0001 212.73 214.77 0.014

We use the performance profile technique from Dolan and Moré (2002) to further
evaluate OSEA. The baselines for comparisons on problem p ∈ P are set as the best
MILP gap and computing time, respectively. Let r tp,X denote the performance ratio of
computing time on problem p ∈ P using technique X ,

r tp,X = t pX
min{t pOSEA, t pstandard}

, ∀X ∈ {OSEA, standard}.

Let ρt
X (τ ) denote the probability for approach X that r tp,X is within a factor τ of

the best ratio in terms of computing time,

ρt
X (τ ) = 1

|P| size
{
p ∈ P : r tp,X ≤ τ

}
, ∀X ∈ {OSEA, standard}.

Similarly, let ρG
X (τ ) denote the probability that approach X is within a factor of τ from

the best MILP gap ratio. In both cases, larger values are preferred. The cumulative
distributions of ρt

X (τ ) and ρG
X (τ ) form the respective performance profiles. Perfor-

mance profiles evaluate the overall performance of a solution technique and when
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|P| is sufficiently large, are relatively robust with respect to performance outliers of
individual problem instances (Dolan and Moré 2002).

The performance profile for solution times are presented in Figs. 3 and 4 with
two different ranges for τ each. The probability that OSEA terminates earlier than
the standard approach is 0.829 (see Fig. 3 when τ = 1). OSEA solves 100% of the
problems within a factor of 6.1 for the computation time ratio, i.e., ρt

OSEA(6.1) = 1,
whereas ρt

standard(6.1) is only 0.606. The performance profile for the standard approach
demonstrates that OSEA is much faster for many problems, e.g., ρt

standard(τ ) ≤ 0.9
for τ ≤ 872 (depicted in Fig. 4.) That is, OSEA terminates 872 times faster than the
standard approach on 10% of benchmark problems.

While the reduced problems solve faster than the original problems, the solution
qualities must be examined. Figure 5 shows the performance profile of solution qual-

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0
τ

ρX
t

Method

OSEA

standard

Fig. 3 Computation time performance profile of the probability each method (ρtX ) is within factor (1 ≤
τ ≤ 10) from the best MILP gap ratio
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Fig. 4 Computation time performance profile of the probability each method (ρtX ) is within factor (1 ≤
τ ≤ 4000) from the best MILP gap ratio
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Fig. 5 Solution quality performance profile of the probability each method (ρtX ) is within factor ( 1 ≤ τ ≤
10) from the best MILP gap ratio

ity for τ ∈ [1, 10]. OSEA is more likely to outperform the standard method, i.e.,
ρG
OSEA(1) = 80% > ρG

standard(1) = 67%. OSEA solves 90% of all problems within
a factor of 1.5 of the best technique. The OSEA solution quality performance profile
is equal to or superior than the standard performance profile across all values of τ .
Note the minimum values of τ necessary to capture all problems: ρG

OSEA(86) = 100%,
whereas ρG

standard(1173) = 100% (not shown in figure) implying that OSEA performs,
at worst, 86 times as bad as the standard technique, whereas the standard technique
performed, up to 1173 times worse than OSEA.

4 Conclusions

The objective scaling ensemble approach is a novel, two-phase heuristic solution
procedure that iteratively solves scaled linear versions of the original MILP problem
and uses a subset of the LP relaxation results to form an ensemble of solutions. This
ensemble is aggregated in such a way to identify integer variables which are not likely
to be used in an optimal solution. These variables are removed from the MILP to
create a reduced problem space. Exact techniques such as branch-and-cut are applied
to the revised problem formulation. If the reduced search space is sufficiently large, a
feasible and even possibly optimal solution for the original MILP can be found. If the
space is small enough, the revised problem space can be searched more efficiently.

The inspiration for OSEA comes from well known and successful heuristic
approaches which have been used in conjunction with other techniques to produce a
more efficient search of complex problem spaces.Many advanced heuristic approaches
are often invoked by default in commercial optimization software. We compare the
solution quality of OSEA in the first 60 s of optimization time to that of the assortment
of heuristics, cutting plane strategies, and exact search algorithms implemented in
Gurobi 5.6.3. OSEA successfully reduces the search space in a way which is compet-
itive with industry leading optimization software.
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The empirical results on 170 publicly available benchmark integer programming
problems and rigorous analysis indicate that OSEAcan improveMILP solution quality
on a wide range of problems without compromising the computation time. Among the
benchmark problems, many are well documented and related to published work (e.g.,
Fischetti et al. 2005; Bley et al. 2010; Raack et al. 2011). The instances include a wide
variety of problem types and application areas including network design, open pitmine
production, the p-Median problem, crew scheduling, and lot sizing, among others.
The problems range in size from hundreds of integer variables to several orders of
magnitude more. For certain problem types evaluated, OSEA performs exceptionally
well, e.g. open pit mining. For others, the results while promising, are mixed, e.g.
network design problems. In future work we will examine the particular nature of
certain problem formulations to understand whether or not the outstanding results
are generalizable to the problem class. In addition, the common characteristics of
problems that OSEA has stable good performance will be investigated to provide a
general guideline to use OSEA . Finally, the improvement of OSEA on the problems
that it perform bad in this work will be investigated, for example, integrating with
other principled heuristics.

OSEA can be easily applied to any MILP problem with integer variables in the
objective function. However, OSEA is not meant to be used exclusive of traditional IP
solvers, but ideally to be incorporated as yet another of the integrated heuristics used
in software. In our initial experimentation to this end, we find OSEA to improve the
solution performance at the root node of the branch-and-bound algorithm, but not to
work well at subsequent nodes. While some heuristics (e.g., RINS) are activated at
various nodes of branch-and-bound, earlier indications are that OSEA is a beneficial
initial heuristic applied specifically at the root node to find better incumbent solutions
early on.
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Appendices

A. Experimental results of Easy instances

Name γ (%) GOSEA (%) TOSEA GStandard (%) TStandard

30_70_45_095_100 11.82 0.00 2.21 0.00 2.79
30n20b8 99.09 0.00 0.38 0.00 2.58
50v-10 88.78 0.12 0.92 0.32 60.00
aflow40b 87.20 0.00 0.94 0.00 60.00
air04 94.12 0.00 11.34 0.00 9.22
app1-2 90.18 0.00 1.34 0.00 47.06
beasleyC3 64.36 0.00 0.24 0.00 10.53
berlin_5_8_0 64.23 0.00 0.03 0.00 60.00
biella1 93.09 1.41 11.60 5.87 60.00
binkar10_1 42.65 0.00 0.40 0.00 8.32
co-100 96.65 0.01 25.07 45.55 60.02
core2536-691 90.62 0.00 16.56 0.00 31.48
cov1075 0.00 0.00 5.97 0.00 3.32
dfn-gwin-UUM 58.95 0.00 2.00 0.00 60.00
eil33-2 97.87 5.43 5.56 0.00 36.46
eilB101 90.74 3.13 2.27 3.02 60.00
enlight13 35.80 0.00 0.01 0.00 3.44
enlight15 53.78 0.00 0.01 0.00 14.42
gmu-35-40 92.92 0.02 0.02 0.03 60.00
gmu-35-50 95.98 0.01 0.03 0.03 60.00
go19 16.99 0.00 60.00 1.18 60.00
harp2 94.85 0.00 0.11 0.00 25.31
ic97_potential 2.63 0.18 60.00 0.08 60.00
iis-100-0-cov 0.00 0.00 60.00 0.00 60.01
iis-bupa-cov 14.97 0.00 60.00 0.00 60.00
iis-pima-cov 55.14 2.94 60.00 2.94 60.00
k16x240 87.95 0.00 0.02 0.00 60.00
lectsched-4-obj 43.26 0.00 0.21 0.00 0.65
m100n500k4r1 95.20 4.17 0.01 4.17 60.00
macrophage 53.41 0.27 0.06 0.00 60.00
mc11 48.53 0.00 1.33 0.00 9.79
mine-166-5 41.08 0.00 0.30 0.00 19.57
mine-90-10 40.11 0.07 0.14 0.07 60.00
mzzv11 96.57 3.91 0.24 0.00 14.93
n3div36 99.69 0.00 24.96 0.15 60.01
n3seq24 98.91 2.25 33.61 2.61 60.04
n4-3 24.14 0.85 60.00 0.19 60.00
n9-3 43.65 3.17 60.00 9.84 60.00
neos-1109824 91.78 0.00 2.08 0.00 26.80
neos-1112782 88.94 0.00 0.15 0.00 8.67
neos-1112787 89.29 0.00 0.13 0.00 1.83
neos-1224597 66.51 0.00 0.25 0.00 0.25
neos-1225589 81.48 0.00 0.08 0.00 0.14
neos-1337307 59.33 0.00 24.75 0.00 25.67
neos-1396125 10.49 0.00 25.63 0.00 10.39
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Name γ GOSEA TOSEA GStandard TStandard

neos-1440225 67.21 0.00 0.76 0.00 23.18
neos-1616732 0.00 0.62 60.00 0.62 60.00
neos-1620770 0.00 0.00 60.00 0.00 60.01
neos-506428 94.65 77.78 7.77 77.78 60.01
neos-520729 99.44 0.00 14.53 0.00 60.02
neos-555424 49.78 0.00 0.31 0.00 5.06
neos-631710 92.67 46.30 32.32 63.49 60.03
neos-686190 90.61 0.59 2.46 10.98 60.00
neos-693347 49.96 1.68 60.00 1.27 60.05
neos-777800 94.89 0.00 7.04 0.00 1.17
neos-824661 92.85 0.00 3.73 0.00 9.13
neos-824695 91.61 0.00 1.09 0.00 2.70
neos-826650 85.79 0.00 0.25 0.00 60.00
neos-826694 86.73 0.00 1.02 0.00 1.97
neos-826812 86.81 0.00 0.64 0.00 0.87
neos-826841 84.78 0.00 0.26 0.00 40.41
neos-885524 99.78 0.00 1.55 0.00 0.58
neos-932816 93.66 0.00 0.88 0.00 0.91
neos-933638 83.64 0.36 60.00 0.00 33.14
neos-933966 89.00 0.00 31.99 0.00 6.68
neos-934278 77.74 8.45 60.00 0.00 42.49
neos-935627 47.56 10.51 60.00 0.19 60.00
neos-935769 41.23 1.95 60.00 0.00 25.78
neos-937511 58.84 0.00 60.00 0.00 10.30
neos-941262 46.16 1.10 60.02 1.10 60.00
neos-941313 79.80 0.00 32.07 0.00 39.15
neos-957389 91.98 0.00 0.39 0.00 1.16
neos15 0.00 0.90 60.00 0.90 60.00
neos16 32.10 0.22 60.00 0.22 60.00
neos18 4.83 0.00 0.44 0.00 41.12
net12 58.07 0.00 0.75 16.08 60.00
nobel-eu-DBE 93.91 2.05 45.11 0.82 60.00
noswot 78.00 0.00 0.01 0.00 42.38
nu60-pr9 90.84 1.58 0.78 3.18 60.35
p80x400b 76.01 0.17 0.07 0.00 60.00
pg 0.00 0.25 60.00 0.25 60.00
pg5_34 0.00 0.03 60.00 0.03 60.00
pigeon-10 82.00 0.00 0.04 0.00 60.00
pigeon-11 82.03 0.00 0.02 0.00 60.00
pw-myciel4 33.24 0.00 60.00 0.00 60.00
pw-myciel4 33.24 0.00 60.00 0.00 60.00
rail507 98.24 0.00 48.07 0.00 60.01
ran14x18 74.42 0.64 0.16 0.64 60.00
ran16x16 72.83 0.10 0.06 0.00 48.51
reblock166 45.54 0.03 0.83 0.06 60.00
reblock67 38.36 0.21 0.06 0.59 60.00
rmatr100-p10 0.00 0.00 28.41 0.00 47.48
rmatr100-p5 0.00 6.69 60.00 6.96 60.00
rmine6 31.66 0.01 0.24 0.00 60.00
rococoB10-011000 87.43 2.54 0.15 7.00 60.00
rococoC10-001000 85.95 0.04 0.08 0.50 60.00
satellites1-25 85.80 0.00 20.80 117.24 60.00

123



W. Zhang, C. D. Nicholson

Name γ GOSEA TOSEA GStandard TStandard

satellites2-60-fs 82.49 144.19 37.60 139.58 60.50
sp97ar 97.61 0.26 22.35 0.88 60.13
sp98ic 98.70 0.19 25.07 0.65 60.00
sp98ir 92.81 0.13 1.40 0.00 30.46
tanglegram1 84.22 0.00 0.87 0.00 4.48
tanglegram2 87.36 0.00 0.11 0.00 0.55
toll-like 55.22 0.33 0.08 1.61 60.00
uct-subprob 5.85 1.57 60.00 0.95 60.37
umts 85.21 0.12 1.77 0.13 60.00
wachplan 86.88 0.00 6.99 0.00 60.00
zib54-UUE 0.00 2.23 60.00 2.23 60.00

B. Experimental results of Hard instances

Name γ (%) GOSEA (%) TOSEA GStandard (%) TStandard

a1c1s1 9.90 0.26 60.00 0.02 60.00
b2c1s1 3.91 5.84 60.00 6.75 60.03
bg512142 5.67 5.44 60.00 8.75 60.00
dg012142 7.68 20.70 60.00 25.81 60.00
dolom1 81.32 92.38 60.00 97.80 60.02
germany50-DBM 1.33 2.13 60.00 1.46 60.00
d10200 79.27 0.10 23.79 0.10 60.00
dc1c 95.24 5.95 19.50 91.22 60.00
janos-us-DDM 25.04 0.05 60.00 0.08 60.00
lotsize 44.77 0.47 60.00 1.22 60.00
eilA101-2 99.54 7.68 23.50 7.68 60.14
n3-3 46.72 3.71 60.00 10.18 60.00
neos-948126 33.25 4.22 60.00 4.22 60.01
neos-984165 39.81 23.97 60.00 23.97 60.01
mkc 96.67 0.02 0.11 0.00 60.00
rmatr200-p10 24.30 2.04 60.00 10.36 60.01
nu120-pr3 92.10 3.99 1.12 4.38 60.43
p100x588b 75.65 0.65 0.29 1.71 60.00
p6b 86.36 0.00 0.02 0.00 60.00
pigeon-12 82.07 0.00 0.03 0.00 60.00
pigeon-13 82.10 0.00 0.03 0.00 60.00
protfold 83.98 34.78 0.07 40.91 60.00
queens-30 95.89 8.11 0.03 8.11 60.07
r80x800 84.42 0.06 0.30 0.06 60.00
reblock354 39.29 0.01 0.28 0.04 60.02
reblock420 45.93 15.28 10.03 15.68 60.06
rmatr200-p20 20.87 0.12 60.01 4.67 60.00
rmatr200-p5 18.83 6.84 60.01 9.24 60.01
seymour 29.68 0.24 60.00 0.24 60.10
rococoC11-011100 90.29 3.14 0.18 6.97 60.15
tw-myciel4 38.03 0.00 0.14 0.00 60.00
wnq-n100-mw99-14 90.58 14.24 22.73 9.44 60.03

123



Objective scaling ensemble approach for integer linear…

C. Experimental results ofOpen instances

Name γ (%) GOSEA (%) TOSEA GStandard (%) TStandard

core4872-1529 67.32 3.96 60.00 3.59 60.01
bab1 98.70 31.16 22.35 31.16 60.01
cdma 83.99 32138.99 20.17 32138.99 60.01
dc1l 95.68 8.00 60.06 10.30 61.98
d20200 85.20 0.30 5.37 0.31 60.00
ex1010-pi 86.93 9.93 60.00 11.02 60.00
ger50_17_trans 97.54 10.82 60.00 15.56 60.00
momentum3 68.69 76.50 60.02 76.50 60.03
methanosarcina 56.53 100.00 0.28 100.00 60.00
n3700 92.85 23.33 60.00 24.64 60.00
n3705 92.32 24.13 60.00 24.22 60.00
n370a 91.65 23.71 60.00 25.09 60.00
neos-937815 48.89 0.56 60.00 0.56 60.00
ns4-pr3 0.99 0.20 60.00 0.19 60.00
ns4-pr9 0.00 0.16 60.00 0.16 60.00
pigeon-19 82.33 5.56 0.07 5.56 60.00
ramos3 18.69 44.77 60.13 48.30 60.11
rmine10 34.92 2.45 14.60 2.46 60.01
rmine14 96.73 2426.06 1.54 2426.06 60.08
rococoC12-
111000

93.73 25.93 0.28 25.54 60.00

rvb-sub 99.39 94.70 22.05 93.47 60.01
siena1 79.86 92.48 60.00 97.73 60.12
sing2 47.56 2.30 60.00 9.22 60.01
stockholm 55.71 99.50 60.01 99.49 60.05
sts405 0.00 60.98 60.04 60.98 60.01
sts729 0.00 62.44 60.01 62.44 60.12
t1717 97.80 43.80 60.02 43.80 60.01
t1722 97.21 35.94 60.00 32.35 60.00
usAbbrv.8.25_70 69.84 21.49 0.08 22.13 60.00
van 0.00 95.17 60.01 95.17 60.01
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