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A B S T R A C T

As the prevalence of social media real-time communication grows among the public, research has increased
regarding its use in various domains of study, including human behavior with respect to natural disasters.
Various metrics, whether related to message posting frequency, origination proximity to the disaster, and/or the
sentiment of the messages themselves are commonly studied. To the best of our knowledge, no study has been
conducted to determine the sensitivity of social media to different types or magnitudes of natural disasters under
various circumstances. We select four types of natural disasters (tornadoes, winter storms, wildfires, and floods)
and for each we examine multiple recent events along with the associated Twitter behavior to evaluate multiple
aspects: duration of social media attention, frequency shifts, frequency shifts for different social vulnerability
levels, tweet proximity to the disasters, and sentiment. The results demonstrate that Twitter is indeed a social
sensor with different sensitivity levels to natural disasters and depending on the event circumstances, a diverse
pattern of social media behavior should be expected.

1. Introduction

Social media platforms such as Facebook and Twitter have become
prevalent communication tools in modern society. These platforms
provide a mechanism for collecting dynamic data on human behavior
and sentiment. Such data has proven useful to study a variety of activity
including crime prediction [1], disease outbreak [2], stock market
prices [3], and political election results [4], among other things.

Recent studies consider the use of social media during natural dis-
asters (e.g. Ref. [5], studying mainly either the mood of the population
or the various reactions of the public during a specific incident. Fur-
thermore, most of the works that utilize social media data to support
emergency management mainly rely on Twitter data for analysis Reuter
et al. [6]. One of the first works in social media data analysis during
disasters was in 2008 after the wildfires in South Carolina [7]. Since
then, many case studies have been related to the Haiti earthquakes
[8,9] Hurricane Irene [10,11], or Hurricane Sandy [12–15]. A summary
of the ongoing research in the area of emergency management using
Twitter as a source of data is provided in Martinez-Rojas et al. [16].
Most of the related analysis, especially those occurring in the United
States, rely heavily on data collected from Twitter.

Twitter is a micro-blogging service in which, collectively, users
broadcast hundreds of millions of brief messages daily [17]. One major
characteristic of Twitter is that the messaging service is conducted in
real-time and the day and time that the message is sent is recorded.

Twitter messages, known as tweets, can also be labeled with keywords
using the hashtag symbol (#) to allow messages to be categorized. The
twitter feed (i.e., on-going stream of tweets sent to users) can be filtered
based on these labels. Additionally, if the user creating a tweet has
permitted location identification services from Twitter, the data include
automatic geolocation coordinates embedded within the tweet. The
real-time nature of this social media platform, the ability to search for
specific keyword labels, and the ability to filter by date, time, and lo-
cation facilitates data collection regarding how the engaged population
react to major events. A wide range of the research conducted considers
a specific case study (i.e., one natural disaster) and focuses on one
particular aspect of behavior. To the best of our knowledge, no study
has been conducted to analyze “Twitter as a sensor” with different
sensitivity levels to various types and magnitudes of natural disasters.

The goal of this work is to study multiple natural disasters, compare
the results on the same scales, and draw conclusions about Twitter
sensitivity levels according to different metrics and different natural
disasters. That is, Twitter might be an excellent tool for collecting data
and studying population sentiment during a major hurricane, but less so
for a large wildfire. Consequently, the main research question is: How
and under which circumstances is social media an effective social sensor
during a natural disaster?

Presently, we aim to broach the subject by looking specifically at
how different metrics, derived from Twitter data, do or do not vary with
respect to different types of natural hazard events. That is, sensitivity, in
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this context, is defined as observable, statistically significant shifts in
Twitter posting frequency and/or user sentiment (specifically, negative
sentiments) with respect to disaster events. Furthermore, we consider
circumstances relating to social vulnerability (geographically defined)
and proximity to the disaster event. This question is a precursor to
questions regarding whether or not we can extract useful information
from social media regarding various natural disasters. Additionally, we
consider how the social vulnerability of the affected populations affects

the sensitivity levels.

2. Background and related work

If patterns are detectable in Twitter feed data in the presence of
natural disasters and if those patterns are distinct based on character-
istics of the disaster, this provides evidence that Twitter is a “sensor”
and is sensitive to distinctions between the different types of disruptive
events. For instance, in the case of an oncoming hurricane, one might
expect a spike in frequency of Twitter messages related to the event.
However, for other less dramatic natural hazards, or those with less
lead time, it is possible that very little relevant information will be

Table 1
64 keywords for filtering disaster tweets.

affected disaster first responders people dead redcross threat
breaking news donate flash flood people died rescuers tornado
bushfire donation flooding people killed responders torrential
casualties dramatic forest fire people trapped seismic tragedy
crisis emergency hail power outage severe tragic
damage evacuated hurricane power supplies shelter victims
dead missing evacuees impacted prayers snow volunteers
deadly explosion injured public safety storm warning
destroyed fatalities injuries ravaged surviving wildfire
destruction fire fighters inundated recover survivor
devastating firefighters magnitude red cross terrifying

Table 2
Disaster events.

Event Date Location Disaster ID

Moore Tornado May 2013 Moore, OK DR-4117
Louisville Tornado Apr 2014 Louisville, MI DR-4175
IL Tornado Nov 2013 Long point, IL DR-4157
GA Tornado Jan 2017 Albany, GA DR-4297
OK Tornado May 2015 Elk city, OK DR-4222
NY Winter Storm November 2014 Buffalo, NY DR-4204
SC Winter Storm February 2014 Half of the state DR-4166
ID Winter Storm December 2015 Notus, Idaho DR-4252
NE Winter Storm December 2016 New York City, NY –
MA Winter Storm January 2017 Boston, MA –
Black Forest Fire June 2013 Black Forest, CO DR-4134
CO Junkins Fire October 2016 Pueblo, CO FM-5157
OR Cornet Fire August 2015 Durkee, OR FM-5097
NH Stoddard Fire April 2016 Stoddard, NH FM-5123
AZ Tenderfoot Fire June 2016 Yarnell, AZ FM-5125
WY Floods June 2017 Fremont, WY DR-4327
NM Floods September 2013 Eastern NM DR-4152
MN Floods September 2016 Southern MN DR-4290
VT Floods April 2014 Jericho, VT DR-4178
US Midwest Floods April 2013 MI, AR, TN DR-4121

Table 3
Breakout dates and total observed time for disasters.

Event td ts tf tobs trec

Moore Tornado 05/19/13 6PM 05/22/13 12AM 05/24/13 06AM 108 54
Louisville Tornado 04/27/14 6PM 04/29/14 12AM 04/30/14 12PM 66 36
IL Tornado 11/17/13 11AM 11/18/13 05AM 11/19/13 11AM 48 30
GA Tornado 01/21/17 12AM 01/22/17 6AM 01/23/17 12AM 36 12
OK Tornado 05/14/17 12PM 05/15/17 12PM 05/16/17 6PM 104 36
NY Winter Storm 11/13/14 5AM 11/17/14 11AM 11/20/14 11PM 186 84
SC Winter Storm 02/12/14 6PM 02/14/14 12PM 02/17/14 12AM 104 60
ID Winter Storm 12/19/15 6AM 12/20/15 12PM 12/22/15 12AM 66 36
NE Winter Storm 12/16/16 6AM 12/17/16 12PM 12/18/16 6PM 60 30
MA Winter Storm 01/07/17 12AM 01/07/17 6PM 01/09/17 12AM 48 30
Black Forest Fire 06/12/13 6AM 06/13/13 06PM 06/14/13 12PM 54 18
CO Junkins Fire 10/22/16 6AM 10/23/16 6PM 10/24/16 12PM 54 24
OR Cornet Fire 08/15/15 12PM 08/22/15 6PM 08/24/15 6PM 222 12
NH Stoddard Fire 04/19/16 6PM 04/21/16 6AM 04/21/16 6PM 48 42
AZ Tenderfoot Fire 06/06/16 12PM 06/10/16 12PM 06/12/16 6AM 138 18
WY Floods 06/11/17 12AM 06/18/17 12AM 06/20/17 12PM 108 84
NM Floods 09/10/13 6PM 09/12/13 12AM 09/13/13 12AM 30 30
MN Floods 09/22/16 12PM 09/23/16 6AM 09/24/16 12AM 18 30
VT Floods 04/15/14 6AM 04/16/14 12AM 04/16/14 6PM 18 18
US Midwest Floods 04/22/13 12PM 04/23/13 6PM 04/26/13 12PM 96 36

Fig. 1. Tweet frequency before filtering.
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captured in the Twitter feed. To address the question of the sensitivity
of Twitter messaging to various hazards, we consider a variety of ele-
ments including, statistical changes in tweet frequency, changes in
sentiment polarity, and hazard proximity. This analysis is conducted in
such a way to support community resilience research. Each of these
elements is now briefly described.

2.1. Breakout detection

Breakout detection, also known as change-point or event detection,
is a technique for detecting specific points in time series data where
certain properties change [18]. There are a variety of ways to determine
these change points. For example, Sakaki et al. [19] studied event de-
tection with Twitter during earthquake scenarios. They employed a
probabilistic method associated with observing a certain number of
keyword-specified positive-sentiment tweets within a given time
period. Earle et al. [20] used the ratio of short-term average tweet
frequency to long-term average tweet frequency of, again, keyword-
specified tweets to determine an event. In both cases, the presence of
the keyword “earthquake” was used to filter the tweets. Cheng and
Wicks [21] did not filter tweets by keywords but applied a space-time
permutation model of the space-time scan statistic technique [22] to all
Twitter data during a time frame of disaster events. Several other works
conducted analysis on Twitter data to detect the onset of disruptive
events [23–26]. A recent technique developed by Twitter called E-Di-
visive with Medians identifies breakouts by detecting divergence in
mean values. According to the authors, their technique is robust to
anomalies in the data and notably faster than other competing methods
[27]. The E-divisive with Medians algorithm is used on a daily basis at
Twitter according to the authors and it has been tested at the University
of Louisville School of Medicine to identify past influenza outbreaks
from CDC data [28]. We employ this method to identify frequency
changes in Twitter messaging with respect to the occurrence of natural
disasters.

2.2. Spatial analysis

In Caragea et al. [13]; the authors mapped the moods reflected in
tweets during Hurricane Sandy. They demonstrated that even if Hur-
ricane Sandy has a regionally limited impact in terms of damage, people
have been emotionally affected by the storm far away from the coast.
Their maps display the population's response in space and time to the
disaster measured through sentiment analysis, showing that the closer
people were to the point where the storm made landfall the more they
tweeted, with negative sentiment tweets always being clustered in
closer proximity to the storm. In Sakaki et al. [29]; the authors per-
formed a trend analysis of the tweets when the Great East Japan
earthquake hit Japan in 2011. They showed that the tweet frequency
peaked dramatically when the earthquake hit. However, by comparing
different regions, they found out that people posted fewer tweets in the
heavily damaged areas compared to areas further away with less da-
mage. This is explained by the fact that people were not in a safe si-
tuation to tweet or were not technically able to access the Internet.

2.3. Sentiment analysis

In research related to the use of social media during natural dis-
asters, several studies measure user sentiment. For example, Nagy and
Stamberger [30] and Caragea et al. [13] classify the tweet text as ex-
pressing Positive, Neutral or Negative emotions (also referred to as the
sentiment polarity). Mandel et al. [10] conducted a demographic ana-
lysis of the sentiment using the tweets corresponding to Hurricane
Irene. A binary (positive or negative) or three-way (positive, negative,
neutral) classification of sentiment are common levels of granularity
used in sentiment analysis [12,31–35]. On the other hand, Schulz et al.
[36] performed a fine-grained sentiment analysis on the disaster-related
tweets. The tweets were classified into 7 categories which include
anger, disgust, fear, happiness, sadness, and surprise. Ragini et al. [37]
proposed a big data framework to analyze the user sentiment by ap-
plying various text mining and machine learning techniques on disaster
related tweets. Apart from sentiment analysis on natural hazard related
tweets, researchers have analyzed tweet sentiment during other types of
emergencies such as the 2013 Boston Marathon bombing [38], the 2017
Las Vegas shooting [39], the Syrian refugee crisis [40] and the Ebola
disease outbreak [41].

Polarity analysis is typically conducted by comparing the text of the
tweet to a lexicon of “positive” and “negative” words. The lexicon we
use was developed by Hu and Liu [42]. Words in the text which are in
either of these lists are said to be polarized words and are tagged. A
cluster of words before and after each polarized word are selected as a
context cluster. The words in the cluster are analyzed to determine if
they include words that modify the meaning of the polarized words
(e.g., “not”, “barely”, “greatly”). The presence and quantity of such
terms is factored into the meaning of each polarized word to provide a
numerical score relating to the strength and direction of the polarity.
These final scores are aggregated for each polarized word and the
message itself is given an overall polarity score [43].

Fig. 2. Tweet frequency after filtering.

Table 4
Results of the frequency analysis for special events.

Event Date ν0 νd νf % inc. p1 p2

NCAA Football 2016 1/11/2016 10.29 (6.74) 13.20 (4.96) 11.10 (7.76) 28.2 0.36 0.50
NBA 2015 06/16/2015 10.29 (5.48) 8.40 (5.54) 24.62 (27.49) −18.4 0.48 0.20
US Presidential elections 11/08/2016 4.50 (2.37) 5.33 (7.50) 4.00

2.30)
18.0 0.86 0.78

NCAA Basketball 2015 4/06/2015 24.33 (11.92) 19.50 (10.60) 26.40 (17.03) −19.9 0.45 0.43
Oscars 2017 2/26/2017 11.37 (7.26) 15.50 (10.66) 7.80 (4.35) 36.3 0.32 0.24
East Coast Blizzard 1/22/2016 1.76 (0.14) 56.00 (34.70) 13.30 (8.60) 369.5 0.01 0.53
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2.4. Social vulnerability

The Social Vulnerability Index (SoVI) was created in 2003 at the
University of South Carolina in order to define, for the United States at
county-level, the social vulnerability of communities to environmental
hazards [44]. Based on demographic and socioeconomic data from the
U.S. Census Bureau (e.g., personal wealth, age, race, etc.), the version of
the index published in 2010 “emphasizes the constraints of family
structure, language barriers, vehicle availability, medical disabilities,
and health-care access in the preparation for and response to disasters”
[45]. After a principal component analysis, scientists obtained seven
components that explain 72% of the variance of the data. Once the
index is calculated for each county they are decomposed into percen-
tiles. Scores in the top 20% correspond to the most vulnerable counties
and scores in the bottom 20% indicate the least vulnerable. This index
can be found in several applications, such as state-level hazard miti-
gation plans or the Sea Level Rise Coastal Impacts Viewer by the Na-
tional Oceanic and Atmospheric Administration (NOAA) (see http://
coast.noaa.gov/slr/). However, no study has been conducted on social
media sensitivity to natural hazards with an emphasis on the social
vulnerability level of the concerned areas and its potential effect on the
results.

From literature we see that work has primarily studied various
Twitter derived metrics given a specific disruptive scenario, however no
work addresses which types of events can be studied using these social-
media based measures. Our work specifically quantitatively evaluates
the ability of Twitter to be used as a sensor for various types of natural
hazards.

3. Methodology

3.1. Data pre-processing

The Twitter Sample Stream returns a random sample from all the
available tweets for a given query [46]. Data from this stream was
collected over multiple years by members of the Archive Team, a group
dedicated to preserving online digital content The Archive Team 2017.
The broad range of dates available facilitates analysis with respect to
several important natural disasters that occurred during the time frame.
In this study, we filter the tweets in order to keep only tweets written in
English, which are geo-tagged, originate from within the United States,
and which were created during the period from 2013 to 2017. Twenty
natural hazards occurring during this time frame are selected for ana-
lysis and detailed in Section 4.1.

The textual content of a tweet can be “noisy”, in that it may include
a variety of non-English content such as HTML links, tags, special
characters, etc. Consequently, the text must be processed prior to
analysis (especially for sentiment analysis). Prior to analysis, we re-
move all “tags” (tagging someone refers to including a @ character
followed by their Twitter user name, e.g., @UofOklahoma), retweet
entities (e.g., RT @UofOklahoma), HTML links, and all punctuation,
special characters, numbers, line breaks, and any additional white-
space. Let the set of all filtered and preprocessed tweets be denoted by
the set T.

Due to the massive quantity of diverse message content in Twitter
data, a keyword filter is useful to identify the text messages which are
germane to the topic of study, namely natural disasters. Such filtering is
commonly performed using specific hashtags (e.g., “#Moore Tornado”
or “#Hurricane Sandy”) to analyze the trend of a particular event on
social media. However, such filtering could easily eliminate many re-
levant tweets. Consequently, we build a catalog of keywords general-
ized for all types of disasters to broaden the scope of messages in the
analysis.

This list of keywords is built in multiple steps: first, a preliminary

Table 5
Results of the frequency analysis.

Event ν0 νd νf % inc. p1 p2 trec

Moore Tornado 31.67 (24.96) 75.90 (50.60) 27.71 (18.09) 139.7 0.02 0.50 54
Louisville Tornado 30.26 (15.91) 75.50 (44.32) 29.03 (13.64) 149.5 0.05 0.76 36
IL Tornado 39.25 (38.50) 79.25 (61.61) 51.35 (31.59) 101.3 0.08 0.20 30
GA Tornado 8.77 (4.90) 14.50 (7.59) 9.85 (6.23) 65.2 0.05 0.48 12
OK Tornado 8.25 (4.30) 19.33 (10.11) 8.05 (4.58) 137.3 0.19 0.97 36
NY Winter Storm 25.93 (10.43) 52.28 (33.77) 40.57 (25.56) 101.6 < 0.01 < 0.01 84
SC Winter Storm 91.31 (50.06) 206.50 (122.86) 64.68 (35.63) 126.2 0.03 0.03 60
ID Winter Storm 8.59 (5.91) 14.60 (7.80) 8.50 (3.70) 69.9 0.01 0.80 36
NE Winter Storm 11.25 (7.24) 21.83 (10.83) 6.64 (3.64) 93.9 < 0.01 < 0.01 30
MA Winter Storm 10.96 (7.91) 38.75 (29.40) 9.60 (6.58) 253.5 0.15 0.49 30
Black Forest Fire 26.85 (13.47) 83.00 (29.02) 24.21 (12.37) 209.1 0.01 0.45 18
CO Junkins Fire 4.77 (2.59) 11.30 (11.60) 4.28 (2.40) 136.3 0.28 0.50 24
OR Cornet Fire 7.55 (3.40) 7.40 (4.40) 7.28 (3.60) −1.5 0.91 0.79 12
AZ Tenderfoot Fire 5.90 (2.80) 8.19 (5.66) 6.17 (3.62) 22.1 0.21 0.78 42
NH Stoddard Fire 7.18 (4.00) 7.28 (2.69) 8.53 (5.14) 1.4 0.95 0.28 18
WY Floods 5.81 (3.99) 10.07 (5.50) 8.44 (5.21) 72.7 0.02 0.04 84
NM Floods 22.13 (12.30) 49.20 (23.20) 23.30 (12.40) 122.0 0.06 0.72 30
MN Floods 5.37 (3.32) 9.33 (2.33) 5.57 (3.34) 73.7 0.01 0.82 30
VT Floods 35.80 (20.50) 81.25 (14.30) 28.50 (3.62) 126.8 < 0.01 0.15 18
US Midwest Floods 48.22 (45.50) 121.33 (93.77) 29.64

23.58)
113.0 0.12 0.06 36

Fig. 3. Tweet frequency for the Louisville Tornado.
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list with a dozen basic keywords such as storm, tornado, flood, hail,
wildfire is used to filter the set of all preprocessed tweets T and create
the subset ′ ⊆T T . All words in ′T are stemmed. Stemming is the process
of reducing words to their word stem, e.g., “connection”, “connections”,
“connected”, and “connecting”, each share the same word stem “con-
nect”. A document-term matrix M is constructed from set ′T . The rows
in M represent the tweets and the columns represent all stemmed words
in ′T . The entry in the ith row and jth column of M equals 1 if the jth

word is found in tweet i and equals 0, otherwise. Next, the matrix M is
used as input for Latent Dirichlet Allocation (LDA). LDA is a common
unsupervised learning technique for topic discovery within documents
[47]. The results of the process allows the identification of a broader list
of disaster related keywords in the corpus of documents. This list
combined with an appropriate subset of the CrisisLex [48], a lexicon
used to improve Twitter communications filtering for crisis situations,
results in a final keyword list of 64 terms for filtering tweets listed in

Table 1. The keywords relate to the vocabulary of natural disasters,
consequences, and emergency response. There is no keyword related to
a specific event, as we wish to measure the general disaster sensitivity
of the social media response.

After filtering out all but the geo-tagged, contiguous U.S. based
tweets written in English which have at least one of the specified
keywords in the text message, the percentage of remaining tweets is
approximately 0.84% of the original sample. For every natural disaster
considered there are thousands of filtered tweets occurring within a few
days of the event onset, ranging from about 3500 to nearly 7600 tweets.

3.2. Metrics analyzed

Using breakout detection, three time periods will be identified: (i)
the disruptive time td, when a change is observed in the normal activity
(e.g., a significant increase in the tweet frequency); (ii) recovering start
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Fig. 4. Median tweet distance for events.
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time ts, when a second change is observed, (e.g., a decreasing trend in
the tweet frequency); and (iii) the stabilization time tf , when the activity
obtains a new stable form and thus reaches a recovered state. Note that
these times do not necessarily align exactly with the dates of the dis-
ruptive event itself. For example, there may be a delay between the
event occurrence and the change in Twitter behavior. These dates will
be used throughout the different analysis, and will help to define any
variations in some metrics over time. In particular, td, ts, and tf are used
to define the following tweet frequency metrics: ν0 denotes the pre-event
tweet frequency and is defined as average number of tweets occurring
during the 7 days prior to td; νd denotes the event-specific tweet fre-
quency and is defined as the average tweet count occurring between
time periods td and ts; and νf is the post-event tweet frequency after
stabilization computed for the 7 days after tf .

To conduct the spatial analyses, the central geospatial location of
each disaster is estimated. While events are not generally stationary,
(e.g., a tornado moves along a path), an approximate location of each
event is defined depending on the type of event. For tornadoes and
hurricanes, we use the first location of impact/landfall; for winter
storms, the city most impacted; for forest fires, the closest city to the
fire. Based on the identified location, the distance from the tweet origin
to the center of the event is computed. The median and third quartile
values for distance of tweets to disaster are compared across disasters.

Additionally, the Social Vulnerability Index associated with each
U.S. county in which the tweet was created is overlaid on the data. This
allows analysis of potential trends or variations in Twitter sensitivity
based on low, medium, and high social vulnerability. The sentiment
analysis is based on a three-way classification of message polarity
(positive, neutral, negative). In particular, we examine the negative
tweets and the skewness over time of the distance to the center of the
disaster. The idea is to observe if negative sentiment tweets cluster in
closer proximity to the disaster location during the event. For an ex-
ample of the polarity, consider the three following tweets identified as
an expressing a positive, negative, and neutral sentiment, respectively,
during a devastating tornado breakout in April of 2014:

Fig. 5. Skewness of negative tweet distance distribution for the sample events.

Table 6
Results of the sentiment analysis.

Event γ0 γd γf % inc. p1 p2

Moore Tornado 2.40 (0.52) 1.84 (0.46) 2.19 (0.57) −23.67 0.01 0.30
Louisville Tornado 2.23 (0.32) 2.75 (0.20) 2.21 (0.50) 23.32 < 0.01 0.92
GA Tornado 1.95 (0.48) 1.97 (0.40) 2.06 (0.55) 1.12 0.94 0.60
IL Tornado 2.36 (0.33) 3.33 (0.81) 2.38 (0.33) 40.59 0.03 0.93
OK Tornado 1.91 (0.44) 1.98 (0.16) 1.80 (0.30) 3.55 0.66 0.47
NY Winter Storm 2.34 (0.41) 2.83 (0.28) 2.93 (0.71) 21.02 < 0.01 0.01
SC Winter Storm 2.48 (0.50) 3.04 (0.46) 2.53 (0.60) 22.60 0.01 0.80
MA Winter Storm 2.04 (0.29) 2.90 (0.29) 2.07 (0.57) 42.05 < 0.01 0.88
ID Winter Storm 2.01 (0.42) 1.66 (0.48) 2.13 (0.58) −17.44 0.21 0.54
NE Winter Storm 1.89 (0.43) 2.19 (0.63) 1.95 (0.30) 15.35 0.26 0.72
Black Forest Fire 2.01 (0.43) 1.48 (0.54) 2.73 (0.37) −26.1 0.08 < 0.01
CO Junkins Fire 1.77 (0.23) 1.76 (0.14) 1.84 (0.17) 0.6 0.80 0.21
OR Cornet Fire 1.88 (0.52) 1.76 (0.32) 2.03 (0.51) −6.2 0.48 0.47
AZ Tenderfoot Fire 1.80 (0.30) 1.70 (0.35) 1.96 (0.44) −3.0 0.84 0.66
NH Stoddard Fire 2.42 (0.37) 2.19 (0.14) 2.28 (0.45) −9.5 0.25 0.37
WY Floods 2.03 (0.40) 2.12 (0.30) 2.11 (0.40) 3.4 0.60 0.61
NM Floods 2.00 (0.57) 1.47 (0.39) 1.93 (0.33) −26.9 0.04 0.75
MN Floods 1.58 (0.17) 1.90 (0.63) 1.63 (0.25) 20.5 0.09 0.50
VT Floods 2.04 (0.50) 2.88 (0.30) 1.68 (0.30) 41.2 0.01 0.03
US Midwest Floods 2.21 (0.23) 2.59 (0.42) 2.10 (0.55) 17.1 0.01 0.52

Table 7
Events that show a significant rise in skewness.

Disaster Type Events with statistical significance in skewness

Tornadoes Louisville Tornado
Winter Storms NY Winter Storm and SC Winter Storm
Wildfires –
Floods New Mexico Floods, Vermont Floods and US Midwest Floods

Table 8
Percentage of tweets by level of social vulnerability.

Event Low (%) Medium (%) High (%)

Moore Tornado 11.59 60.11 28.30
Louisville Tornado 14.71 53.33 31.96
GA Tornado 12.91 50.08 36.99
IL Tornado 14.23 53.52 32.24
OK Tornado 10.66 54.77 34.55
NY Winter Storm 13.54 55.83 30.63
SC Winter Storm 15.55 55.17 29.28
MA Storm 12.94 52.17 34.87
ID Storm 15.15 53.13 31.71
NE Winter Storm 13.66 52.25 34.08
Black Forest Fire 13.34 54.26 32.39
CO Junkins Fire 8.51 53.31 38.17
OR Cornet Fire 10.01 51.69 38.29
AZ Tenderfoot Fire 9.51 49.37 41.07
NH Stoddard Fire 13.20 52.20 34.60
WY Flooding 10.99 54.20 34.71
NM Floods 15.72 50.25 34.02
MN Floods 10.21 47.84 41.93
VT Floods 13.47 52.16 34.35
US Midwest Floods 14.15 60.09 25.75
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• Positive: “thunderstorm naps are the best”

• Negative: “i hate storms so much”

• Neutral: “i ain't seen no tornado”

4. Analysis and results

4.1. Case studies

The event scenarios included in this analysis are grouped into ca-
tegories used by the Federal Emergency Management Agency (FEMA)
to classify disaster declarations: tornadoes, winter storms, wildfires and

Table 9
Results of the social vulnerability analysis.

Event ν low
0 νd

low % inc. plow ν med
0 νd

med % inc. pmed ν high
0 νd

high % inc. phigh

Moore Tornado 3.48 8.10 132.7 0.07 19.19 48.90 154.9 0.01 9.00 18.70 107.8 0.06
Louisville Tornado 4.19 17.00 306.2 0.05 15.89 42.00 164.3 0.07 10.19 16.50 62.0 0.02
GA Tornado 1.18 2.25 90.67 0.11 3.92 7.25 84.9 0.04 3.66 4.75 29.78 0.39
IL Tornado 5.70 15.00 163.0 0.29 20.50 43.00 109.8 0.06 13.07 21.25 62.58 0.29
OK Tornado 0.81 2.66 228.39 < 0.01 4.40 12.00 172.7 < 0.01 2.92 4.66 59.58 0.11
NY Winter Storm 3.78 7.50 98.5 0.01 13.52 29.22 116.2 < 0.01 8.56 15.44 80.5 0.01
SC Winter Storm 14.69 38.50 162.0 0.02 53.12 105.38 98.39 0.05 23.50 62.50 166.0 0.04
MA Winter Storm 1.40 5.50 290.8 0.19 5.96 19.00 218.8 0.17 3.59 14.25 296.9 0.18
ID Winter Storm 1.59 2.00 25.8 0.48 4.44 7.60 71.2 0.01 2.55 4.90 92.2 < 0.01
NE Winter Storm 1.70 2.16 27.2 0.51 5.70 11.66 104.6 0.01 3.77 8.00 112.2 < 0.01
Black Forest Fire 3.85 12.60 227.1 0.07 13.59 50.20 269.3 0.01 9.41 20.20 114.7 < 0.01
CO Junkins Fire 0.44 0.60 36.4 0.59 2.44 7.20 195.1 0.35 1.85 3.40 83.8 0.05
OR Cornet Fire 0.62 0.86 38.7 0.27 3.96 3.77 −4.8 0.80 2.55 4.90 92.2 < 0.01
AZ Tenderfoot Fire 0.57 0.56 −2.5 0.95 3.11 4.00 30.4 0.29 2.80 3.18 13.6 0.59
NH Stoddard Fire 1.03 0.42 −58.7 0.04 3.70 3.71 0.27 0.98 2.40 3.14 30.8 0.31
WY Floods 0.81 1.04 28.4 0.44 2.77 5.84 110.8 < 0.01 2.22 3.16 42.3 0.11
NM Floods 3.07 8.60 179.0 0.11 10.80 25.00 131.5 0.07 8.14 15.40 89.2 0.01
MN Floods 0.55 0.33 −40.0 0.50 2.77 5.16 86.3 0.01 2.03 3.83 88.7 < 0.01
VT Floods 5.33 10.75 101.7 0.15 18.30 44.00 140.4 0.07 12.07 26.50 119.6 < 0.01
US Midwest Floods 6.03 20.80 255.9 0.12 26.90 77.66 188.7 0.10 15.11 22.66 50.0 0.22

Fig. 6. Tweet frequency by social vulnerability level for the sample events.

Table 10
Example negative tweets from different distances.

Message State Distance (miles)

“Just drove through Moore, OK and the view of the tornado damage made my heart drop. My prayers go out to all those impacted” Oklahoma 0.5
“what happened in Oklahoma is tragic I have no idea why anyone chooses to live in tornado alley” Massachusetts 1510.4

S.K. Theja Bhavaraju, et al. International Journal of Disaster Risk Reduction 39 (2019) 101251

7



floods. We have selected five examples of each type for analysis which
occurred between 2013 and 2017. Table 2 lists the event type, date,
location, and the US Federal Emergency Management Agency (FEMA)
disaster declaration ID if available. All processed tweets have been
grouped by 6 h time windows to determine the breakout time points.
Table 3 list the breakouts detected for each case study. The last two
columns provide the total observed time, tobs = −t tf d and total recovery
time, trec = −t tf s, in hours. Observed times vary among all the disaster
events. The longest event impact on Twitter was the Oregon Cornet fire
(222 h). The shortest events were the Minnesota and Tennessee floods
(18 h).

4.2. Filter quality

Prior to considering the specific impacts on tweet behavior with
respect to natural disasters, we first address the effectiveness of the pre-
processing approach discussed in Section 3. In particular, are the 64
keywords sufficient to allow the filtering of non-disaster related events.
If not, then any “signal” detected could simply be related to an overall
increase in tweet volume due to other significant events. To address
this, we have identified 5 non-disaster events occurring during the
tweet time frame and applied the filter to determine if the stated ap-
proach is effective. Ideally, after applying the filter, there will be no
change in tweet frequency before, during, or after the non-disaster
events.

As an illustration of the filtering, consider Fig. 1 which depicts tweet
frequency from January 2016 before filtering and Fig. 2 after filtering.
For purposes of visualization, the tweets are binned in 2-h blocks. The
2016 College Football Playoff National Championship was held on
January 11, 2016. After filtering, there is no noticeable change in the
tweet behavior around January 11. However, there is a noticeable spike
that occurs near January 22. This spike corresponds to a blizzard that
hit the US Northeast and Mid-Atlantic causing multiple governors to
issue a state of emergency.

All five special events as well as the East Coast Blizzard are listed in
Table 4 along with the date of the event, the 7-day average pre-event
tweet frequency ν0, the event specific tweet frequency νd, the 7-day
average post-event tweet frequency νf , and the percent change between
ν0 and νd (% inc.) is shown. For all analyses, except for the skewness
analysis (Section 4.5), tweets are grouped in 6-h time windows. The
standard deviations are reported in parenthesis. The significance of the
difference between ν0 and νd or between ν0 and νf is statistically eval-
uated using an independent two-sample t-test (with unequal sample
sizes and either equal or unequal variances based on the results of Le-
vene's test for homogeneity of variances) and the resulting p-values, p1
and p2, are respectively obtained.

Table 4 provides statistical evidence that the filter is working as
expected. After filtering, there are no statistically significant changes in
tweet frequency before, during, or after the non-disaster events. How-
ever, for the East Coast Blizzard, there is considerable statistical evi-
dence of a frequency change during the event, i.e., the value for νd is
statistically different from ν0. Afterwards, the tweet frequency returns
to pre-event levels (there is insufficient evidence that νf differs from ν0).

4.3. Frequency analysis

Table 5 summarizes the tweet frequency variations for each case
study using the same calculations as in Table 4. Note that ν0 is the
average tweet frequency over the 7 days prior to td; the disrupted fre-
quency, νd, is the average frequency between the time points td and ts;
and νf is the average over the 7 days after time point tf and the percent
change between ν0 and νd (% inc.). For the tornado events, the observed
increase from ν0 to νd range from 65% to 149% and four out of five of
the events reflect statistically significant frequency changes with 90%
confidence (statistically significant results are in bold). Fig. 3 depicts
one example of the tweet frequency, derived breakout points, and

impact to tweet frequency based on a disaster event (i.e., Louisville
Tornado). For each event, the recovered stable state frequency is not
statistically different from the pre-event frequency. For the winter
storms, again four of the five events show a statistically significant
frequency difference when comparing the ν0 with νd. However, the re-
covered stable state frequency for the NY, SC, and Northeast Winter
Storms is statistically different than the pre-event level.

Among the wildfire events only the Black Forest Fire reflects a
statistically significant difference from ν0 to νd. However, there is in-
sufficient evidence that νf differs from ν0 for any of these events. For
Flood events, four of five events have sufficient data to demonstrate
statistically valid changes in pre-disaster to post-disaster tweet fre-
quency. Two floods have recovered tweet frequencies that are statisti-
cally different from the pre-disaster levels (WY and US Midwest
Floods).

4.4. Proximity analysis

The proximity analysis is based on tweets posted between td and ts
for each disaster. Fig. 4 depicts a bar chart of the median tweet dis-
tances for each disaster in the study. Tornadoes and winter storms
appear to have relatively lower median distances for most events,
ranging from 325 to 918 miles and 460 to 1450 miles, respectively. For
floods, the median distances are between 567 and 1352 miles and for
wildfires, the median values are from 1081 to 1652 miles.

Tornadoes and storms have the lowest median values among all the
disasters. We hypothesize that since the damage is confined to a smaller
region, more tweets cluster close to the disaster area. The wide spread
of the tweets in case of wildfires may be related to the fact that since a
forest fire does not directly hit a large population area (at least not at
the beginning), tweets are less clustered close to the disaster. On the
other hand, since floods affect a larger area, we see a difference in the
proximity of tweets with respect to the disaster location. For example,
the majority of the tweets come from relatively nearby in case of the
Vermont Floods but a much further distance for tweets associated with
the New Mexico Floods.

4.5. Sentiment analysis

In Neppalli et al. [35]; the positive skewness of the tweet distance
distribution was tracked over time to see if the tweet locations clustered
near the event (in their case, the landfall point of Hurricane Sandy).
High positive skewness indicates a tendency to cluster and they found
negative sentiment tweets to have higher skewness values than positive
sentiment tweets (at least during the earlier part of the storm). For the
current analysis, we examine the skewness trends of negative sentiment
tweets across multiple events corresponding to different disaster types.
Since we are filtering the data again by negative polarity, thereby di-
minishing the amount of available data over time, tweets have been
grouped into 12-h time windows for the skewness analysis. Fig. 5 de-
picts the skewness trends in negative tweet distances (aggregated in
groups of 12 h) for one of the Louisville Tornado event.

From Table 7 it is seen that in the case of tornadoes, we observe a
statistically significant increase of the skewness only for the Louisville
Tornado. For the winter storms, both the NY Winter Storm and SC
Winter Storm show a significant rise in the skewness. While none of the
wildfires show a significant rise in the skewness, New Mexico Floods,
Vermont Floods and US Midwest Floods show a significant increase in
the skewness. The increase lies in the range of 21–42% regardless the
type of disaster.

To help evaluate these changes, the tweets distance distributions
can be aggregated into three groups: pre-event, during, and post-event
time frames. Let γ0, γd and γf represent the skewness of negative senti-
ment tweets during the stable pre-event state (computed for the 7 days
prior to td), the disrupted state (the time between td and ts), and the
recovered stable state (computed for the 7 days after tf ). Table 6 reports
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these values for each disaster event.

4.6. Social vulnerability analysis

Based on the county of origin for a tweet, we overlay the SoVI in-
dices to associate a level of social vulnerability (low, medium, high).
Table 8 shows the percentage of all tweets originating from the three
vulnerability classes for each event. There is good representation for all
events and for all SoVI classes. Approximately 30%–40% of the tweets
are from high vulnerability areas.

For each SoVI class, in Table 9 we report the 7-day pre-disaster
average tweet frequency (νlow

0 , νmed
0 and νhigh

0 ), the disrupted tweet fre-
quency (νd

low, νd
med and νd

high) between td and ts, the percent change, and
the p-value from the t-test to determine whether or not the difference in
means is statistically significant (plow, pmed and phigh). Statistically sig-
nificant differences at a 90% confidence level are in bold. For nearly
every event, statistical shifts in tweet frequency are observed in at least
one vulnerability class. The evidence for the shifts have a different
profile by class. For example, consider the frequency analysis in Table 5
for the OK Tornado event. Overall, there is insufficient evidence to
support a statistical change in the tweet frequency. However, in
Table 9, there is considerable evidence ( <p 0.01) for a frequency shift
among both the low and medium SoVI classes, although this is not true
for the high vulnerability tweet origins. As an example, Fig. 6 shows the
tweet frequency based on various SoVI classes for the Louisville Tor-
nado.

Additionally, for both the ID and NE Winter Storms, there is con-
siderable evidence for tweet frequency changes in the medium and high
SoVI classes but not in the low vulnerability class. For the fires, a tweet
frequency shift is detectable among all three classes for the Black Forest
Fire. The Colorado and Oregon fires only show a shift in the high SoVI
class, whereas the New Hampshire fire only impacts tweet frequency
among the low SoVI class. Finally, for the flood events, the low SoVI
class shows no statistically different impacts for any event, whereas
both the medium and high groups reflect several statistically valid
shifts.

5. Summary and discussion

The validity of using Twitter as a sensor is dependent on the ability
to extract informative content from the vast amount of unrelated con-
tent in social media. In this study we collect and analyze Twitter feed
data for multiple natural hazards: 5 tornadoes, 5 forest fires, 5 wildfires,
and 5 floods. The Twitter data is filtered with general disaster related
keywords as opposed to event specific keywords to help generalize the
research and to not focus on single events or depend on hashtags. These
keywords were shown to effectively ignore non-hazard events yet suc-
cessfully capture major natural hazards even when both events occur
during the same general time frame.

Breakout detection is used to identify when the social media begins
(and ends) its response to the disaster events. The expectation is that for
disaster events in which the tweet frequency increases from the stable
to disrupted states, there is potential of crowd-sourcing informative
disaster information. That is, the increase in social media activity can
be attributed to the event and thus the signal to noise ratio increases
during the disrupted periods.

Overall, we notice that wildfires are less likely to shift tweet fre-
quencies or impact negative sentiment than the other three hazard
types. This is possibly due to their locations further from highly po-
pulated areas. However, areas with higher levels of social vulnerability
may be more sensitive to wildfire events than others. Twitter behavior
associated with tornado events is observed to return to its pre-event
norms in all cases studied. This is possibly due to the fact that tornado
events are generally shorter in duration than the other hazards con-
sidered.

The distances from tweet origins and the disaster centers is specific
to the nature of the event. We expect that traditional media plays a
large role in this. If the natural hazard is widely covered in the news,
and especially if the damage reports are significant, it is more likely that
Twitter users will comment on the disaster even if they are not directly
impacted. The trends in distance skewness for negative sentiment
tweets is not consistent across the events. In some scenarios, the ne-
gative tweets cluster closer to the disaster, but for others this is not the
case. We hypothesize that the tweets which are closer to the disaster
will have higher information content than those further away. Consider,
for example, the two negative sentiment tweets in Table 10 referring to
the 2013 Moore Tornado event. The first, originating at ground zero,
comments on the level of devastation from an eyewitness; the second,
originating from 1500 miles away, makes a general comment regarding
the tragedy. During the analysis, we also notihengce that the negative
tweets closer to the various disaster events are more likely related to the
disaster itself. As the distance increases, the amount of messages not
related to the event also increase. This is an important issue to note
when conducting such social media analyses since it affects the signal to
noise ratio.

The level of social vulnerability is also a factor which influences
sensitivity to natural disasters. The empirical analysis demonstrates that
the expected social media reactions should not be assumed to be
homogeneous among the three levels analyzed. The shifts in tweet
frequency are distinct in magnitude with respect to the disaster and the
social vulnerability.

It is clear that Twitter can be considered a sensor for natural ha-
zards. However, the results indicate that the various Twitter behaviors
and metrics (duration of attention, frequency, frequency based on
vulnerability, proximity, and polarity) are sensitive in different ways to
the different types of natural disasters. It is critical that researchers
understand that Twitter response patterns for a certain natural hazard
type will not necessarily translate to other hazard types. Careful con-
sideration should be employed when evaluating Twitter response to
wildfires, for example, as compared to tornadoes. Furthermore, the
social vulnerability of the effected population will play a distinct role in
the user's social media behavior. Certain events have a broader impact
in terms of distance, may be sustained for a longer time, and be ob-
served differently among subgroups. Future work will leverage this
finding to further analyze the quality of the information and actionable
content within such social media feeds.
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