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A B S T R A C T

The multi-modal freight transportation network plays a vital role in maintaining commodity flows across
multiple industries and multiple regions. As such, the effects of large-scale disruptive events could result in the
closure of key transportation nodes and links, causing disruptions in commodity flows and larger disruptions to
industries requiring those commodities for economic productivity. This work integrates a multi-commodity
network flow formulation with an economic interdependency model to quantify the multi-industry impacts of a
disrupted transportation network to devise contingent rerouting plans to strengthen the network's adaptive
capacity. The formulation proposed here is illustrated with a freight transportation planning case study in the
state of Oklahoma, considering disruptive scenarios in which a network component is lost and how the proposed
approach improves total economic productivity following a disruption.

1. Introduction and motivation

The US has defined a number of critical infrastructures, the dis-
ruption of which “would have a debilitating impact on security, na-
tional economic security, national public health or safety, or any
combination of those matters” [White House 2013]. Among these cri-
tical infrastructures are transportation networks, which enable the flow
of people and commodities, and recent reports suggest that many
highways, bridges, and other transit assets in the US fall short of a state
of good repair, potentially threatening the efficiency of the network [US
Department of Transportation, 2013].
In 2013, 55 million tons of goods valued at more than $49.3 billion

traversed the US freight transportation system each day, and freight
tonnage and monetary value rose by 6.3 and 8.0 percent, respectively,
over 2007 levels [US Department of Transportation, 2015]. Over the
next 30 years, transportation's contribution to the US gross domestic
product is expected to grow to approximately $1.6 trillion [US
Department of Transportation, 2015]. Given the potential for disrup-
tion by malevolent attacks, natural disasters, human-made accidents, or
common failures, recent US planning documents focus on the criticality
of transportation network preparedness [The House Committee on
Transportation and Infrastructure 2013; US Department of
Transportation, 2014; Yusta et al., 2011]. Emphasis has been placed on
“securing and managing flows of people and goods” along

transportation networks [DHS, 2014].
The consequences of disruptions to critical infrastructures highlight

the need to better understand resilience, or the ability to withstand the
effects of and recover timely from a disruption. Particularly for critical
infrastructures, The Infrastructure Security Partnership (2011) noted
that a resilient infrastructure sector would “prepare for, prevent, pro-
tect against, respond or mitigate any anticipated or unexpected sig-
nificant threat or event” and “rapidly recover and reconstitute critical
assets, operations, and services with minimum damage and disruption.”
As with any other critical infrastructure, resilience planning is im-
portant for multi-modal transportation networks due to their role in the
economic vitality of states, regions, and the broader country. The
functionality of this network is threatened by disruptive events that can
disable the capacity of the network to enable flows of commodities in
portions of nodes and links [Kengpol et al., 2012; Miller-Hooks et al.,
2012; Lee and Kim 2010]. Transportation network disruptions lead not
only to physical damage, but also to an interruption of economic pro-
ductivity across multiple industries due to infrastructure inoperability
[Tierney 1997; Webb et al., 2000, Ham et al., 2005; Pant et al., 2011;
Park et al., 2011]. As such, a comprehensive discussion of transporta-
tion network resilience should account for multi-industry impacts.
The use of the term “resilience” has increased substantially in the

literature in recent years [Mattson and Jenelius, 2015; Hosseini et al.,
2016; Kamalahmadi and Parast, 2016], recognizing a shift in planning
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from prevention and protection to preparing for the inevitability of
disruption. Several qualitative and quantitative frameworks being
proposed to describe the resilience of a system (e.g., Patterson et al.,
(2006); Zobel (2011);Sarre et al., (2014);Patterson et al., (2006); Zobel
(2011); Sarre et al., (2014)). In particular, the paradigm proposed by
Henry and Ramirez-Marquez (2012), along with several applications
and extensions [Barker et al., 2013; Pant et al., 2014a; Baroud et al.,
2014], quantifies system resilience as a function of time. Fig. 1 depicts
system performance, generally quantified with function t( ), before,
during, and after a disruptive event (e.g., t( ) could describe traffic or
commodity flow in a transportation network over time). Fig. 1 high-
lights two dimensions of resilience: vulnerability, or the extent to which
performance degrades after a disruption [Zio et al., 2008, Jonsson et al.,
2008, Zhang et al., 2011], and recoverability, or the ability to return to a
stable, desired level of performance [Barker et al., 2013; Pant et al.,
2014a].
Similarly, Vugrin and Camphouse (2011) suggest that the resilience

capacity of a system is a function of three components: (i) absorptive
capacity, or the ability of a system to absorb or withstand a disruption
with essentially no change in performance, (ii) adaptive capacity, or a
short-term means to quickly regain a desired performance, and (iii)
restorative capacity, or the long-term repair of physical damage. Vugrin
and Camphouse (2011) pose absorptive, adaptive, and restorative ca-
pacities as first, second, and third “lines of defense,” where the next is
engaged if the previous fails. In a transportation network context, (i)
absorptive capacity may describe the physical characteristics of, say, a
bridge to withstand the shock of an earthquake, (ii) adaptive capacity
may include alternate paths in the network that could be engaged
quickly to work around damaged areas, and (iii) restorative capacity
may describe the long-term bridge reconstruction activities required to
restore the transportation network. Relative to Fig. 1, the collection of
absorptive and adaptive capacities may reduce vulnerability, while
restorative capacity would improve recoverability.
While most definitions of resilience recognize the time-dependent

nature of withstanding and recovering from a disruption, Rose (2004)
defined static resilience as “the ability of an entity or system to maintain
function when shocked.” This is depicted in Fig. 2, where %ΔDYmax

represents the maximum percentage change given the worst-case level
of performance following a disruptive event, and %ΔDY represents the
actual percentage change in the performance of the system (assuming
the implementation of a mitigation strategy) [Rose 2009]. The original
application of static resilience, as well as several subsequent studies
(e.g., Rose (2007, 2009), Rose and Wei (2013), Hallegatte (2014), [Pant
et al., 2014a, b], Baghersad and Zobel (2015)), deal with economic
disruption. Mathematically, static resilience is measured in terms of the
maximum potential drop in system performance and the estimated
performance drop, as shown in Eq. (1). This quantitative approach is
used in this study to define a performance measure for post-disaster
rerouting, though we prefer the term adaptive capacity rather than
static resilience.

=static resilience % DY % DY
% DY

max

max (1)

Faturechi and Miller-Hooks (2015) thoroughly review the literature
on transportation system performance considering disruptions to phy-
sical infrastructure. Defining a four-phase disaster life cycle as (i) mi-
tigation, (ii) preparedness, (iii) response, and (iv) recovery, they sug-
gest that most work focuses on assessing the transportation system's
ability to deal with disruption consequences, with less work assessing
strategies to manage the system after the disruption. Further, the lit-
erature that seeks rerouting strategies to mitigate the effects of dis-
ruption by maintaining freight flow through a residual network is
sparse [Khaled et al., 2015, Gedik et al., 2014]. And, to the author's
knowledge, the approach proposed here to reroute flow and plan for
adaptive capacity by considering the contribution of transportation
network components to multi-industry impacts is non-existent in the
literature. To address this gap in the literature, we propose an in-
tegrated optimization formulation to reroute commodities through the
residual network to decrease the effect on local industries requiring
those commodities for production. To do so, we combine a multi-
commodity network flow formulation of a multi-modal transportation
network with a risk-based multi-industry impact model in an integrated
formulation. In particular, we integrate adopt an input-output model to
represent multi-industry impact, chosen because of its ease in integra-
tion with an optimization formulation (discussed in detail later). An-
other popular option for multi-industry impact is the computable gen-
eral equilibrium (CGE) model, a multi-layer agent-based simulation
meta model that simulates agents in an economy that react to price and
quantity signals, and such a model does not lend itself so easily for use
in a multi-commodity network flow optimization model.
This paper is arranged as follows. Section 2 describes the proposed

approach to plan for adaptive capacity in a disrupted freight trans-
portation network, developing a model to accommodate flow through
the residual network after disruption by integrating a multi-commodity
network flow formulation with a risk-based economic interdependency
model. Section 3 presents an illustrative example, developed based on a
partial freight transportation network within the State of Oklahoma
consisting of three important business economic areas and the multi-
modal freight network infrastructure which facilitates trade with cen-
ters out of the state. Section 4 provides concluding remarks and future
research avenues of this work.

2. Methodological background

A disruption within a freight transportation network affects its vital
role in transporting raw materials among manufacturers and final
products between manufacturers and consumers. Such a disruption in
the flow of commodities leads to economic losses across multiple

Fig. 1. System performance, φ(t), trajectory facing a disruptive event [Henry
and Ramirez-Marquez 2012].
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Fig. 2. The performance components of static resilience [Rose 2009; Pant et al.,
2014b].
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industries. To devise an adaptive capacity strategy (i.e., post-disruption
rerouting) to lessen total economic losses following a disruption, we
propose an optimization framework that integrates (i) a multi-com-
modity network flow model of freight movement, (ii) a risk-based in-
terdependency model of multi-industry impacts, and (iii) an objective
function that addresses adaptive capacity with a measure of static
economic resilience [Rose 2009, 2013; Pant et al., 2014b]. The pro-
posed optimization model is developed following a three-step approach,
illustrated in Fig. 3.

2.1. Freight movement and disruption

To model a supply-demand network for a set of business economic
areas consisting of different industries interacting with their suppliers
and customers located outside of their region through a multi-modal
freight transportation system, a typical multi-commodity network flow
(MCNF) model (e.g., Ahuja et al. (1993);Ahuja et al., (1993)) is used.
The goal of this model is to facilitate the commodity flows between
suppliers and consumers through a capacitated transportation network
while minimizing the cost of transportation. Planning decisions in a
multi-modal freight transportation network is made at strategic, tac-
tical, and operational levels [Crainic and Laporte 1997]. It is assumed
that (i) strategic decisions determine general development policies and
define the operating strategies of the system over relatively long time
horizons (e.g., the location of the physical transportation network, the
location of main facilities such as rail yards or multi-modal platforms
[Liotta et al., 2015]), (ii) tactical plans deal mostly with medium-term
decisions (e.g., route choice and type of service to operate, aggregate
scheduling [Kengpol et al., 2012]), and (iii) operational level decisions
are made when real or near real-time response is required (e.g., crew or
container scheduling [Wang and Yun, 2013]). In this work, when a
disruption interrupts the movement of commodities through the net-
work, a tactical contingent rerouting plan is sought, for the period of
disruption, to maintain the functionality of the supply-demand network
as much as possible.
The topology of the multi-modal freight transportation network, as

well as corresponding supply and demand nodes, must be extracted to
model and analyze the behavior of the network before and after dis-
ruption. The transportation network is considered to be a facilitator of
K interacting industries, where multiple supply and demand nodes of
commodity k could represent a particular industry. Based on a con-
ventional MCNF model, the network is defined on directed graph

=G N L( , ), where N is a set of nodes, each of which could be home to
either suppliers or consumers of multiple commodities, and L is a set of
links connecting nodes. For this graph, K denotes the number of com-
modities in a network instance, each representing an industry. Let fij

k

denote the decision variable associated with the flow quantity of
commodity …k K{1, , } on link i j L( , ) . Let parameter wij

k denote the
associated per-unit transportation cost. The costs differ based on link
properties such as length and transportation mode (e.g., waterway,
railway, highway). Let parameter uij denote the total flow capacity of
link i j L( , ) . That is, the capacity of each link is a shared or “bundle”
constraint for all commodities flowing on the link. The supply/demand
requirement of commodity k at node i N is denoted by parameter bi

k.
If bi

k is positive, then node i is a supply node of commodity k. Similarly,
if bi

k is negative, then node i is a demand node for commodity k. If bi
k is

zero, the node i is a transshipment node with respect to commodity k.
The mathematical formulation for the MCNF problem is provided in Eq.
(2). Without loss of generality, each node within the network can be
home to either suppliers or consumers of multiple commodities. The set
of nodes then can be partitioned into three mutually exclusive sets:

= +N N N N( , , )0 where N denotes the set of nodes representing nodes
which are home to consumers, +N denotes which are home to suppliers,
and N0 denotes all transshipment nodes. Each commodity belongs to an
industry in the economy as defined by the North American Industry
Classification System (NAICS).

= = …

= …
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k

( , )
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(2)

From a tactical point of view, integrating (i) industries and (ii) their
supply capabilities or demand requirements together with (iii) the
structure of the transportation network, can result in a minimum cost
MCNF model that can route commodities from suppliers to demand
nodes via fij

k, collectively representing the flow of commodities on the
links of a baseline (undisrupted) network.
Natural hazards, human-made events, or common failures could

threaten the functionality of the network components and consequently
interrupt commodity flows. A scenario-based removal of network
components known as interdiction [Murray et al., 2008] is a common
theme in modeling and analysis of supply-demand network disruption.
The consequences of a hazards, attacks, or failures are simulated as
disruptions in the flow of valuable goods or services through the net-
work caused by disabling network components. The functionality of the
network is analyzed to determine how vulnerable it is to interdiction,
and which nodes or links, if lost, result in the most damage to network
performance. Interdiction analyses encompass a wide range of possible
disruptions that may vary with respect to spatial scales, correlation of
disruptive events, sequence of failures, and event duration.
A disruption scenario is defined as the set of network components

that are impacted, the degree to which they are disabled, and the op-
erating conditions (e.g., network activity, link/node capacities) of the
network prior to the disruption regardless of the initiating event that
causes the disruption. Different approaches to model a transportation
network disruption have been offered (e.g., losing a bridge, a road
segment, or a hub [Jenelius and Mattson, 2012; Burgholzer et al., 2013;
Rupi et al., 2014]), with most approaches considering one component
being affected [Faturechi and Miller-Hooks 2015]. A disrupted network
component may be rendered completely inoperable by a disruption
(e.g., losing a road completely due to a bridge collapse), or its func-
tionality may drop to a lower level (e.g., an accident blocking a single
lane of an interstate highway segment). Simulating the disruption sce-
nario enables the evaluation of the impact of the failure. Impacts can be
considered as the direct associated failures in network operability (e.g.,
flow or capacity reduction) or consequential failures (e.g., the economic
impacts affecting the production and consumption of flows) [Matisziw
and Murray 2009]. It takes time to recover affected network compo-
nents (e.g., after Hurricane Katrina, it took up to six months in southern
regions to recover highway networks, whereas northeast regions

Fig. 3. Three-step approach to planning for adaptive capacity with multi-in-
dustry impacts.
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recovered much more quickly [DesRoches, 2006]; after an I-40 bridge
collapsed in Oklahoma following a barge collision in 2002, traffic was
rerouted for nearly two months while crews rebuilt the infrastructure
[Aydin and Shen, 2012]). As such, devising an efficient and effective
contingent rerouting strategy immediately after extreme events would
assist the economic productivity of the disrupted region.
In the case of any disruption modeled as the removal of a network

component or a set of components (or a drop in functionality of the
network modeled as reduction of link capacities, uij), the consequences
are sought by deducting the commodity flows on the affected links from
the baseline flow, as calculated in Eq. (1). Let =G N L( , ) represent the
network after disruption with updated sets of links, L and nodes, N .
The sets N , +N , N0 denote the post disruption sets of nodes associated
with home of consumers, home of suppliers, and transshipment nodes,
respectively. The quantity of commodity k at node i that is either un-
delivered and remaining with the suppliers, or unsatisfied demand of
consumers, is reflected in the slack variable Si

k . This slack variable will
be used subsequently to drive the calculation of inoperability among
multiple industries. It is assumed that each type of commodity re-
presents the output of a lone industry, and interdependent inoperability
propagated through a set of industries caused by unsatisfactory de-
mands/supplies will be modeled in the next section.

2.2. Multi-industry impact

In this work, we use an extension of the input-output economic
model, for which Wassily Leontief (1966) won a Nobel Prize, to capture
the multi-industry impacts of unmet demands at demand nodes and
remaining commodities at supply nodes as the result of a disruption to
components of the transportation network. The input-output (I-O)
model is a widely accepted model for analyzing the interdependent
connections among industries [Miller and Blair 2009], and the use of
the I-O enterprise for studying disruptions was among the 10 Most
Important Accomplishments in Risk Analysis: 1980–2010 [Greenberg
et al., 2012].
Under a static equilibrium, the total output of industry (or economic

sector) k is distributed to other industries and also satisfies external
(consumption) demand. Under a proportionality assumption, this
equilibrium condition is described with = +=x z ck r

K
kr k1 , where xk is

the total output of industry k, zkr is the input of industry k to the
production of industry r (intermediate consumption), and ck is the ex-
ternal (final) consumption for industry k 's output. The intermediate
consumption, zkr , is assumed to be proportional to the output of in-
dustry r ( …r K r k{1, , }and ), expressed as =z a xkr kr r . In the
common form of the Leontief I-O model, industry production is mod-
eled as = +Axx c, where x is the vector of industry production out-
puts, A is an industry-by-industry matrix of interdependency coeffi-
cients, akr (proportion of industry k 's input to r , with respect to total
production of industry r), and c is a vector of final consumption. The
model shows that total production is made up of industry-to-industry
intermediate production, Ax, and production to satisfy final con-
sumption, c.
The availability of data describing the parameters of the I-O model

in the US through the Bureau of Economic Analysis (BEA) (2010), as
well as a number of other countries [OECD 2012], justifies the ex-
tensive use of I-O models. To model the propagation of inoperability, or
the proportional extent to which industries are unproductive after a
change in final consumption or a forced change in final consumption
due to a lack of supply, Santos and Haimes (2004) propose the In-
operability Input-Output Model (IIM), extending the capability of the I-
O model to model not only economic interdependency but inter-
dependency in broader infrastructure sectors. This risk-based model is
defined from two metrics [Haimes et al., 2005, Santos 2006]: (i) in-
operability qk and (ii) final consumption perturbation ck , which are
defined in Eqs. (4) and (6), respectively. Providing a different per-
spective from the traditional I-O model, the IIM shows how normalized

production losses propagate through interconnected industries with a
normalized interdependency matrix A . Describing the relationships
among K industries, resulting in matrices of size ×K K and vectors of
length K , Eq. (3) formulates the propagation of the inoperability in a
group of interconnected industries.

= + =q A q c q I A c[ ] 1 (3)

Vector q is a vector of industry inoperability describing the pro-
portional extent to which as-planned productivity or functionality is not
realized following a disruptive event. Inoperability for industry k is
defined in Eq. (4), where as-planned total output is represented with x̂k
and degraded total output resulting from a disruption is represented
with x̃k. An inoperability of 0 suggests that an industry is operating at
normal production levels, while an inoperability of 1 represents the
situation in which an industry is completely inoperable.

= =q x x x q x x x( ˆ ˜ )/ ˆ [diag(ˆ )] (ˆ ˜)k k k k
1 (4)

A normalized form of the original A matrix describing the extent of
interdependence among a set of industries or sectors is defined as A .
The row elements of A indicate the proportion of additional inoper-
ability that are contributed by a column industry to the row industry,
shown in Eq. (5),

= =a a x x A x A x( ˆ / ˆ ) [diag(ˆ )] [diag(ˆ )]rk rk r k
1 (5)

The calculation of c , a vector of normalized final consumption
reduction is provided in Eq. (6), where the elements of c represent the
difference in as-planned final consumption ĉk and perturbed final con-
sumption c̃k divided by as-planned production, quantifying the reduced
final consumption for industry k as a proportion of total as-planned
output.

= =c c c x c x c c(ˆ ˜ )/ ˆ [diag(ˆ )] (ˆ ˜)k k k k
1 (6)

In addition to industry inoperability, a traditional economic loss
metric can be calculated by multiplying each industry's production
level, xk, in dollars, by its inoperability level: for industry k, =Q x qk k k.
Such a measure can also be expressed for the collection of K industries,

=Q x qT . As such, decisions to plan for adaptive capacity can be made
with respect to economic impact across multiple industries.
The freight transportation network provides a platform for com-

modity flows between industries. Since the IIM models how demand-
related risk in a given industry propagates to other industries due to
their interdependent productivity, the multi-industry impact of a dis-
ruption to a freight transportation network can be studied when net-
work losses are related to final consumption reduction and inoper-
ability terms as shown in subsequent subsections. The demand-
reduction IIM proposed by Santos and Haimes (2004) has been suc-
cessfully employed to study multi-industry impacts of perturbations in
supply and demand (e.g., Resurreccion and Santos (2013);Pant et al.,
(2011);Haggerty et al., (2008);Lian and Haimes (2006);Resurreccion
and Santos (2013); Pant et al., (2011); Haggerty et al., (2008); Lian and
Haimes (2006)). However, some (e.g., Kujawski (2006);Kelly (2015);
Kujawski (2006); Kelly (2015)) have questioned the usefulness (and
theoretical plausibility) of supply-driven models developed from con-
cepts by Ghosh (1958). Leung et al., (2007) integrated a supply-side
price IIM and output-side IIM to address initiating perturbations related
to input factors (value added) and to industry output levels, though
some aspects of this model may be impractical for integration with
supply-demand networks as applied in our proposed approach (though
may be effective in modeling disruptions to manufacturing systems, as
noted by Kelly (2015)). Here, we translate a disruption in the form of
remaining commodities at supply nodes and/or unmet demand at de-
mand nodes into the two IIM metrics of inoperability and final con-
sumption perturbation, based on a demand-reduction IIM implemented
by Pant et al., (2011) in modeling supply and demand perturbation
caused by a port closure. Pant et al., (2011) considered commodities
remaining at suppliers after a disruption to calculate the final
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consumption perturbation. And the authors considered unmet demands
to calculate a “forced” demand reduction, assuming that a disruption
decreases the supply of a commodity for a demand node while the final
external consumption remains virtually unaffected. In such a case, the
demand nodes temporarily sacrifice their internal need for that com-
modity until it returns to its as-planned supply level, and a surrogate to
supply reduction is calculated from the combination of “forced” in-
ternal consumption and an output inoperability.
In the following subsections, N represents the set of nodes within

the area of interest , and N ¯ represents the set of nodes outside of the
area of interest, such that =N N N ¯ . We formulate the economic
consequences of a failure within a particular area of interest (e.g., a
business economic area, county, state, entire country). As such, the
failure in the form of remaining commodities at suppliers and unmet
demand at consumers are captured only in the nodes within the area of
interest and each of the economic parameters (i.e., x , c, c and q) are
indicators of the industries specific to the region of interest. To simplify
the notation, superscript is not included for these economic metrics to
avoid unnecessary indices.

2.2.1. Modeling remaining supply
Transportation facilities operate as facilitators of commodity flows

across business economic areas. For a supplier of commodity k located
in node i, any transportation network disruption that perturbs its de-
sired export will be considered to be a reduction in final consumption.
As modeled in Eq. (7), final consumption for industry k includes com-
modities consumed by industry k itself internally, c(ˆ )k int, and the
amount of external consumption that is exported through the network,
c(ˆ )k G. It is assumed that the disruption results in losses of commodity
flows only through the network, while industry production activities
unrelated to the network experience no direct failure but might be af-
fected indirectly by a disruption within the network (due to an inter-
dependent loss of economic productivity). When industry k has diffi-
culty only in exporting commodities, it experiences commodities
remaining at supply nodes in the region of interest totaling

+
Si N N i

k
( )k

, where +N represents the set of nodes that are home to
suppliers in the region of interest after the disruption, as shown in Eq.
(8). As such, the final consumption perturbation for industries that
experience difficulties only in exporting commodities is modeled as the
amount of slack divided by as-planned industry output in Eq. (9), Note
that the supply-demand network may consist of suppliers and con-
sumers located outside of the region of interest, yet failures to these
suppliers and consumers are not accounted for in this model.

= + …c c c k nˆ ( ˆ ) (ˆ ) , {1, , }k k int k G (7)

= …
+

c c S k nˆ ~ , {1, , }k k
i N N

i
k

( )k (8)

= …+c
S

x
k n

ˆ
, {1, , }k

i N N i
k

k

( )k

(9)

2.2.2. Modeling unmet demand
As discussed by Pant et al., (2011), the amount of import (input) of

industry k at demand nodes in the supply-demand network defined as
bi N N i

k
( )k

contributes toward the production activity and the
internal consumption of industry k. Thus, when industry k has difficulty
only in importing commodities, it experiences unmet demands in the
region of interest totaling Si N N i

k
( )k

. This results in the loss of
output, x̂k, representing x x( ˆ ˜ )k k , and final internal consumption,

c( ˆ )k int . Here, N represents the set of nodes after disruption located in
the geographical area of interest that are home to consumers of
commodity k.

= + …S x c k nˆ (ˆ ) , {1, , }
i N N

i
k

k k int
( )k (10)

Therefore, for industry k, unmet demand causes an inoperability, qk ,
measured as the loss of production in industry k as a proportion of its
original production level, as shown in Eq. (4) with x xˆ / ˆk k. Also, internal
consumption failure, as shown in Eq. (7), causes a final consumption
perturbation, ck , and is modeled as a measure of the change in the final
consumption as a proportion of the original production level in industry
k, as shown in Eq. (6) with c xˆ / ˆk k. The approach to formulate failure in
the form of unmet demand is adapted from the port disruption work of
Pant et al., (2011, 2015) and the transportation network vulnerability
formulation of Darayi et al., (2017), in which a slack variable Si

k is
defined to capture unsatisfied demand at demand nodes (or undelivered
commodities remaining with the suppliers), shown in Eq. (11). For the
industries experiencing difficulties only in importing their required
commodities, there exists a final consumption perturbation, as modeled
in Eq. (12).

= …c
x

S x

x
k nˆ

ˆ

ˆ

ˆ
, {1, , }k

k

i N N i
k

k

k

( )k

(11)

= …c
S

x
q k n

ˆ
, {1, , }k

i N N i
k

k
k

( )k

(12)

Eqs. (9) and (12) combined with the IIM in Eq. (3) form a complete
solvable system that quantifies the inoperability and final consumption
perturbations for the collection of K interconnected industries. For
simplicity, the demand perturbations in Eqs. (9) and (12) assume failure
in either only demand nodes or only supply nodes within a particular
industry, whereas in actual situations, some industries would likely
consist of both supply and demand nodes. Therefore, the total final
consumption perturbation for industry k, in the case of having both
importing (demand) and exporting (supply) roles, is given in Eq. (13).
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Any of Eqs. (9), (12), or (13) captures the perturbation vector c
that parameterizes the interdependency model in Eq. (3) based on the
exporting or importing nature of the nodes belonging to each industry.
Thus, q can then be calculated to measure the proportional extent to
which as-planned productivity or functionality is not realized following
a transportation network disruption that results in unmet demand or
commodities remaining with suppliers, and a contingent rerouting
strategy can be devised during the period of disruption to lessen the
multi-industry impact of the disruption.

2.3. Planning for adaptive capacity

Adaptive capacity is considered to be the extent to which a freight
transportation network is capable of facilitating economic productivity
by the (short-term) rerouting of commodities through the residual
network to reduce remaining commodities at suppliers and unsatisfied
demand at consumers. Inoperability in industry k is calculated with Eq.
(3), and economic losses for industry k can be found by multiplying the
proportional inoperability by expected production level in monetary
units, =Q x qk k k. Economic losses for the entire set of industries is cal-
culated with =Q x qT . As such, inoperability or economic impact at the
industry level, or total economic impact at the across all industries, can
be used to valuate strategies for strengthening adaptive capacity. Pro-
posed in Eqs. (14) and (15) are two such metrics motivated by Eq. (1).
When planning emphasis is placed on a particular industry (i.e.,

rerouting freight in the transportation network to reduce the impact to
industry k), Eq. (14) is proposed to valuate a strategy to strengthen
adaptive capacity. Term e

k is a proportional measure involving (i) the
economic loss, Qe

k, experienced by a particular industry k following
disruptive event e when no adaptive capacity planning is taken and (ii)
the economic loss, QR

k, in industry k when a strategy is taken to avoid
the maximum economic loss in that particular industry.
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For a perspective that spans all industries, Eq. (15) provides a si-
milar proportional metric, whereQe is the multi-industry economic loss
caused by disruption e in the baseline case, andQR is the multi-industry
loss when a rerouting strategy is taken to avoid the maximum economic
loss.

= Q Q
Qe

R e R

e (15)

Assuming a multi-industry perspective and considering a hypothe-
tical decision maker interested in limiting economic losses across
multiple industries, Eq. (15) serves as the objective function in the
following optimization framework that integrates the multi-commodity
network flow model from Section 2.1 and the Inoperability Input-
Output Model from Section 2.2. Following a particular disruption e that
affects a particular set of transportation links, the proposed model in
Eqs. (16)–(24) seeks to optimally reroute the flow of commodities
through the residual network such that a measure of static economic
resilience is minimized. Here, it is assumed that the result of the model
provides decision makers with a rerouting strategy across different
modes. The period of disruption is assumed to be sufficiently long en-
ough to employ intermodal container scheduling models (e.g., Lee and
Kim (2010); Wang and Yun (2013);Lee and Kim (2010); Wang and Yun
(2013)) to devise operational-level plans based on the resulted con-
tingent rerouting strategy in the simplified static supply-demand net-
work. Notation employed in the problem formulation is summarized as
follows, noting that network variables (e.g., the sets of links and nodes)
with a prime as superscript are related to the network after disruption,
referred to as the residual network.

Parameters
L set of links N set of nodes
Nk set of nodes related to industry k uij capacity of link i j( , ) after dis-

ruption
N0 set of transshipment nodes qk inoperability of industry k

N ' set of nodes that are home to
consumers

N set of nodes that are home to
consumers in the region of in-
terest

+N set of nodes that are home to
suppliers

+N set of nodes that are home to
suppliers in the region of in-
terest

i intermediate variable to keep the
slack at node i positive

bi
k mass-balance variable repre-

senting demand/supply/trans-
shipment at node i after dis-
ruption

µk binary coefficient with value 0
when no unsatisfied demands at
demand nodes and 1 when at
least one demand node with un-
satisfied needs

Si
k slack variable that captures

undelivered commodity k re-
maining with the supplier node
i or unsatisfied demand at de-
mand node i

ark elements of the normalized inter-
dependency matrix A

ck final consumption perturbation
for industry k

xk production level of industry k in
monetary value

Decision variable

fij
k integer variable represents the

flow of commodity k across link
i j( , ) in the network after disrup-
tion

Based on this notation, planning for adaptive capacity by rerouting
the flow of commodities through the residual network is formulated as
follows.
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The formulation implements the idea of planning for adaptive ca-
pacity in a disrupted transportation network where the residual active
network is presented by =G N L( , ), with updated sets of links, L , and
nodes, N . The bundle constraint in Eq. (17) ties together the com-
modities by restricting the total flow of all the commodities on each link
i j( , ) to at most uij, the capacity of that particular link after disruption.
In other words, all industries share the capacity of network compo-
nents, resulting in competition among them for a share of undisrupted
capacity. fij

k represents the flow of commodity k across link i j( , ) which
remains in the updated set of links, L . Eq. (18) represents mass balances
on each node, where bi

k captures demand/supply at each node in the
residual network. A slack variable Si

k is defined to capture undelivered
commodities remaining with the suppliers, or unsatisfied demand at
demand nodes. The magnitude of Si

k is positive, and multiplier i takes
on a negative value for set of demand nodes (after disruption) N , a
positive value for supply nodes (after disruption) +N , and zero for
transshipment nodes (after disruption) N0, as shown in Eq. (19). Eqs.
(20)-(22) are constraints that translate remaining commodities at
supply nodes and unsatisfied demand at demand nodes (in the geo-
graphical area of interest, α) into multi-industry inoperability. Here, ck
transfers remaining commodities of type k at the supplier and/or un-
satisfied demands, Si

k , into a final consumption reduction from Eq. (13)
with respect to the total output of that particular commodity, re-
presenting the total output of industry k, x̂k. Considering Nk as set of
nodes related to industry k (in the residual network), which either
supply or demand commodity k, in Eq. (20), qk is added to capture the
consequences of unsatisfied demand at nodes within the region on the
inoperability of that industry, reasoning that any disruption leading to
unsatisfied demands has an impact on the output of that particular
industry which needs to be taken care of in the total interdependent
inoperability. As the network might connect industries within the re-
gion of interest into their suppliers or customers out of the geographical
area of interest, it is desired to consider the effect of failure in terms of
remaining commodities at suppliers in the region of interest re-
presented by +N , and unmet demand at demand nodes within the re-
gion of interest represented by N A binary coefficient, µk, in Eq. (20)
takes on value 0 when there are no unsatisfied demands at demand
nodes within the region under study and 1 when there is at least one
demand node with unsatisfied needs. Eq. (21) requires that µk be
binary, defining a sufficiently large M . Eq. (22) implements the IIM to
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capture the adverse effect of the disruption in terms of remaining
commodities at supply nodes and unsatisfied demand at demand nodes.
The multi-industry economic impacts of the failure devising a rerouting
strategy are captured in Eq. (23) with total economic loss QR. This
equation integrates the monetary value of the flow of each industry into
the objective function. The objective function aims to maximize the
progress in reducing economic loss, and as the structure of the network
does not let the improvement in all industries flow at once, the objec-
tive function prioritizes the commodities that most affect the reduction
in economic loss. And the objective function is the proportional eco-
nomic saving, parametrized based on Eq. (15) in which Qe, maximum
economic loss experienced by the whole economy in the case of a dis-
ruption when no mitigating strategy is taken, is already calculated
based on Section 2.1. and 2.2. The proposed approach benefits from the
flexibility, scalability, and efficiency of the base MCNF paradigm with
respect to optimization [Ahuja et al., 1993; Manfren 2012], as practiced
in modeling interdependencies in critical infrastructure networks (e.g.,
Lee et al., (2007);Holden et al. (2013);Lee et al., (2007); Holden et al.,
(2013)).
The complexity of the model is n KO( )2 , and it has KO( ) binary

variables. We do note that although complexity of the problem is linear,
but the number of industries would not be drastically large, meaning
that the number of constraints would be computationally manageable.
However, as the network flow variables are defined as integer, nO( )2 ,
the increase in the size of the network, combined with the number
binary variables, complicates the calculations for large instances. In the
stylized case study in the next section, the model performs well for
small to medium scale problems, and the average solution time is less
than 5 s. Also, it is possible to enhance the performance of the for-
mulation for large scale problems by relaxing the integrality of the
network variables.

3. Illustrative example: multi-modal freight transport in
Oklahoma and the surrounding region

A multi-modal freight transportation network, consisting of three
important interstate highways, railways, and inland waterways that
connect to the Mississippi River Navigation System via two ports, plays
an important role in transporting commodities produced in the business
economic areas within the state of Oklahoma to consumers in neigh-
boring states. A portion of this multi-modal freight transportation net-
work is illustrated on a case study to implement the proposed model to
improve adaptive capacity with a post-disruption rerouting strategy. A
scenario-based disruption defined as the removal of a particular net-
work component is considered in the illustrative example. Customers in
surrounding states are considered to be four combined demand nodes
connecting to Oklahoma's multi-modal freight transportation network.
The multi-industry impact of the disruption within the economy of the
state of Oklahoma guides the rerouting of commodities throughout the
residual network as an adaptive (short-term) strategy. This illustrative
network is adapted from Darayi et al., (2017). The case study has been
solved using optimization software LINGO, version 15.

3.1. Supply-demand network

Fig. 4 depicts a supply-demand network considering supply nodes as
the three important business economic areas within the state of Okla-
homa, consisting of Oklahoma City (node 1), the Port of Catoosa in
Tulsa (node 2), and the Port of Muskogee (node 3). Customers (demand
nodes) in the most important states interacting with Oklahoma in-
dustries are Texas, Louisiana, Arkansas, and Illinois [Ingalls et al.,
2002].
The multi-modal freight transportation network, which enables the

commodity flows from suppliers within the state of Oklahoma to the out
of state consumers, is discussed in brief in Table 1. The network consists
of a part of interstate highways I-35, which connects Oklahoma to the

north-south corridor, and I-40 and I-44, which enable trade through the
east-west corridor. Part of US highways 169 and 165 within Oklahoma
connects the Port of Catoosa and the Port of Muskogee to the interstate
highway network. In addition to the truck way facilities, an intermodal
rail-truck facility in Oklahoma City near the junction of I-35 and I-40,
and the one in Tulsa, OK, which run by Burlington Northern Santa Fe
(BNSF) railroad are considered in developing the network, as well as
part of the inland waterway network navigated by McClellan–Kerr
Arkansas River Navigation System which connects the Port of Catoosa
and the Port of Muskogee to the Port of New Orleans, LA (node 5), the
Port of Chicago, IL (node 7), the Port of Little Rock, AR (node 6), and
the Port of Texas City, TX (node 4).
As defined by NAICS, 62 industries operate in Oklahoma, therefore

the A matrix regionalized for Oklahoma is 62 × 62. Due to high trade
figures reported by Bureau of Transportation Statistics (2010a), six
industries are considered to be industries that primarily export com-
modities to out-of-state customers, listed in Table 2. Discussed pre-
viously, it is assumed that each commodity belongs to an industry as
defined by NAICS economic sectors, and each node within the network
is considered to be home to either suppliers or consumers of multiple
commodities.
Based on the combined estimated annual supply and demand in tons

for the associated industries and states compiled from different data-
bases [US Army Corps of Engineers, 2013, Tulsa Port of Catoosa 2013,
Bureau of Transportation Statistics 2010a,b, Port of Muskogee 2013,
Bureau of Economic Analysis 2010], a list of monthly supply and de-
mand is presented in Table 3 (assuming constant monthly demand, or
annual demand divided by 12).

3.2. Freight movement and disruption

To parametrize the MCNF model in Eq. (1), the cost vector is
computed based on the transportation mode and the mileage of the
distances between nodes: the per ton-mile for a barge is estimated at
$0.97, compared to $2.53 for rail, and $5.35 for trucking [Arkansas
Waterway Commissions 2014]. The monthly capacity of each link,
shown in Table A1 in the appendix, is estimated from historical data as
a shared constraint for all commodities flowing on the link [ODOT,
2013], representing the availability of transportation facilities. As-
suming that the total supply of commodity k is equal to the total de-
mand of the same commodity throughout the network, as shown in
Table 3, a baseline flow resulted in no remaining commodities at supply
nodes and no unsatisfied demand at demand nodes when there is no
disruption to the functionality of the network.
In the illustrative example, disruption scenarios are defined as the

one-at-a-time removal of a single network component at a time. It is
assumed that a disruption, or the removal of a particular network
component, lasts for a period of one month. Assuming that annual in-
dustry production accumulates consistently across the year (i.e., neither
production nor interdependency relationships vary day-to-day, week-
to-week, month-to-month), a smaller month-long time horizon is con-
sidered here as an appropriate proportion of a year to calculate the
particular disruptive event cascading effect (e.g., a two-week closure of
port facilities [Pant et al., 2011]). Shown in Table 4, two transshipment
nodes (nodes 9 and 11, which have a vital role in connecting segments
of high volume freight traffic on interstate highways), some segments of
the North America Railroad (node 8 and link (8-4)), a local railroad
which connects industrial parks to the North America railroad (link
(2–8)), and parts of the waterway system (link (2–5)) were each re-
moved one-at-a-time from the network to define the disruption sce-
narios. And the impact of these individual removals were measured.
Focusing on the economy of the state of Oklahoma, and considering
supply nodes within the state interacting with demand nodes in sur-
rounding states, undelivered commodities remaining with suppliers or
unsatisfied demand at demand nodes, as represented by Si

k, affect in-
dustry output and result in propagated inoperability through many of

M. Darayi et al. International Journal of Production Economics 208 (2019) 356–368

362



the interconnected industries. In the illustrative example, all the supply
nodes are within the state of Oklahoma and the four demand nodes are
located outside of Oklahoma. Table 4 reports

+
Si N N i

k
( )k

, the sum of
the slack (remaining supply) by commodity at the supply nodes when
different network components are disrupted, omitting the flow on the
disrupted component from the baseline flow within the network. As
shown in Table 4, the Petroleum and coal industry (324) is directly
vulnerable in all disruption scenarios except for the loss of link (1,7),
while the Food and beverage and tobacco industry (311) would be af-
fected only by the loss of link (2,5).

3.3. Multi-industry impact

As all the demand nodes are located outside of Oklahoma, failure in
the form of the inability of suppliers to export commodities is modeled
as a demand perturbation as calculated in Eq. (14). Other industries
within the state will be affected by the interdependent effect of this
failure, as captured by qk in Eq. (3), representing the extent to which an
industry output will not be produced. And the effect of the disruption
on the economy of the state is captured by Q, assuming that industries

not using the transportation network have not experienced any demand
perturbation. Given the remaining commodities left at supply nodes,
shown in Table 4, demand perturbation is calculated with Eq. (14).
Resulting industry inoperability, qk, is provided in Table 5 and depicted
in Fig. 5. The Petroleum and coal industry (324) is most vulnerable to the
removal of the link (2,8), link (2,4), or node 8. The removal of these
components also affect the operability of the Nonmetallic minerals in-
dustry (327), though to a lesser extent than the removal of link (1,7).
The productivity of the Chemical products industry (325) is highly

(a) (b)

Fig. 4. Representations of (a) spatial location of multi-modal nodes in Oklahoma and surrounding states, and (b) the connected transportation network.

Table 1
Spatial location of multi-modal nodes in Oklahoma and surrounding states.

Component Description

Node 1 Oklahoma City
Node 2 Port of Catoosa
Node 3 Port of Muskogee
Node 4 Port of Texas City
Node 5 Port of New Orleans
Node 6 Port of Little Rock
Node 7 Port of Chicago
Node 8 Intermodal terminal, Tulsa, OK
Node 9 Transshipment node that connects the Oklahoma City, OK, business economic area to the north and south through I-35 and to the east

through I-44
Node 10 Transshipment node in Fort Smith, AR, that is a connecting point on I-40 to link Oklahoma City and Tulsa, OK to Little Rock, AR
Node 11 Transshipment node that connects the Tulsa Port of Catoosa industrial park to I-44.
Link (1,7) Part of the North America railroad which connects Oklahoma City, OK, with Chicago, IL.
Link (2,8) A local railroad connecting Port of Catoosa to the North America railroad
Link (1,4) Part of the North America railroad which connects Oklahoma City, OK, with Texas City, TX.
Links (2,5), (2,4), (2,6), and (2,7) Part of the inland waterway network navigated by McClellan–Kerr Arkansas River Navigation System and connect Port of Catoosa with the

Port of New Orleans, the Port of Texas City, the Port of Little Rock, and the Port of Chicago, respectively.
Links (3,6), (3,4), and (3,5) Part of the inland waterway network navigated by McClellan–Kerr Arkansas River Navigation System and connect the port of Muskogee to

the Port of Little Rock, the Port of Texas City, and the Port of New Orleans, respectively.
Link (9,4) The truck way connects Oklahoma City to Texas City, TX, using interstate highways I-35 and I-45.
Link (9,11) Part of interstate highway I-44 which connects Oklahoma City to Tulsa.

Table 2
Names and NAICS codes for the primary industries using the network.

Industry name NAICS code

Food and beverage and tobacco products 311
Petroleum and coal products 324
Chemical products 325
Nonmetallic mineral products 327
Machinery 333
Miscellaneous manufacturing 339
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dependent on the connectivity of Tulsa and Oklahoma City through I-
44, as represented by link (9,11), as well as transshipment nodes 9 and
11. The inoperability values in Table 5 may appear to be negligible at
first, but these numbers are significant when linked to the concept of
failure probability in the reliability or quality engineering literature
(i.e., the maximum allowable failure probability for a six sigma com-
pliant system is 3.4E-06).
Considering each industry's production level in monetary value and

calculating total impact of the disruption across the state's industries
with Q, Table 6 and Fig. 6 provide the supplementary analysis which
elaborates the magnitude of loss (in million USD) experienced by dif-
ferent industries regarding the total economic loss. The interconnected
nature of the industries within a region affect productivity of the other
56 industries operating in Oklahoma though individually to a much
lesser extent than the six industries directly affected. Many industries
are vulnerable to any sort of disruption affecting the operability of node
8, the intermodal terminal facilities at the Port of Catoosa, or either of
the links connecting it to nodes 2 or 4, the port itself and the state of
Texas, respectively. The Petroleum and coal products industry (324) is a
high dollar industry in Oklahoma affected the most by the disruption
scenarios, though less vulnerable to disruptions that remove links (2,5)
or (1,7) from service.

3.4. Planning for adaptive capacity

During the month-long period of disruption, the efficacy of con-
tingency rerouting through the residual network is determined ac-
cording to its reduction in economic productivity of Oklahoma.
Respectively, Tables 7 and 8 report interdependent economic inoper-
ability experienced by the six most important industries in Oklahoma
and the consequential multi-industry economic losses following the
contingency rerouting strategy devised from the model developed in
Eqs. (16)–(24) to minimize e

R. e
R is defined as a measure to lessen the

maximum potential drop in the regional economy, lies on [0,1], where
= 0e

R means that under a disruption scenario e, there is no way to
avoid the maximum possible loss in the economy of the region by re-
routing the supply-demand network, and = 1p means that under a
disruption scenario e, it is possible to maintain the full productivity of

the regional economy by rerouting commodity flows through the re-
sidual network. Comparing the inoperability caused by the removal of
the network component with and without devising a contingent re-
routing strategy during the period of disruption, shown in Figs. 7 and 8
respectively, shows that the proposed model to plan for adaptive ca-
pacity tries to facilitate the trades in high dollar industries like Petro-
leum and coal products (324) and Miscellaneous manufacturing (339),
while having less impact on Chemical products (325) or Food and bev-
erage and tobacco (311) industries.
Fig. 7 depicts how contingent rerouting would affect the maximum

loss across multiple Oklahoma industries following the removal of the
particular components. And, as listed in Table 8, this strategy could
lessen the vulnerability of the whole system with respect to the removal
of particular components like link (2,5) as part of the inland waterway
network. It is also inferred that industries in Oklahoma are most vul-
nerable to disruptions that cause inoperability in (i) node 8, the inter-
modal terminal facilitates the movement of commodities in the in-
dustrial park of Port of Catoosa to out-of-state customers, (ii) link (8,4),
a portion of railroad that connects Oklahoma to Texas City, TX, or (iii)
link (2,8), a local railroad that connects the Port of Catoosa to the North
America railroad intermodal terminal, as even rerouting cannot suffi-
ciently enhance the performance of the collective industries, as mea-
sured by e

R, by more than 37%. As shown in Table 8, the maximum
possible loss resulting from the removal of a network component will be
avoided with a contingent rerouting strategy, as in some cases system
performance improved up to 85%.
As a contingent rerouting strategy is sought considering the total

economic impact embedded in Eq. (15), priorities given to high-dollar
industries and those with the highest interdependent impacts across
industries. Though Fig. 8 shows the absolute benefit of implementing
the adaptive capacity planning strategy in the case of different dis-
ruption scenarios, there might be cases in which the rerouting strategy
results in losses to particular industries. Because of the structure of the
network in the case study, the assumption that the residual capacity in
all industries should be less than or equal to its inoperability results in
infeasibility as (i) the distribution of the network capacity over the
network component does not allow the flow in all industries to increase
at once, and (ii) the objective function tries to maximize the total
economic loss in the minimum possible time immediately after dis-
ruptions, and as such it focuses on rerouting the flow of those industries
most affect reducing total economic loss. These results can also assist in
prioritizing more important industries in after a disruption.
Fig. 9 shows how contingent rerouting strategies affect different

industries (in the form of box plots generated across the eight disrup-
tion scenarios). For example, the rerouting strategies taken following
the eight different disruption scenarios would lessen the economic loss
in Petroleum and coal products (324) industries by $25.46 million, on
average, and at least $0.55 million, in the case of losing link (1,7).
Overall, the Chemical products (325) and Food and beverage and tobacco
(311) industries are most adversely impacted, as shown in Fig. 9, be-
cause optimal contingency rerouting tends not to benefit these in-
dustries in favor of the larger economy, as shown in Fig. 8.

Table 3
Combined monthly demands/supplies at supply/demand nodes connecting
through the network (in tons).

Industry

311 324 325 327 333 339

Supply nodes in OK
Oklahoma City 362526 0 300501 183188 23790 118242
Port of Catoosa 50244 454911 284685 25268 2470 424
Port of Muskogee 0 33962 0 31886 0 30021
Demand nodes outside of OK
TX 97281 316905 204006 0 25838 30154
LA 50244 18449 0 0 267 0
AR 265245 153518 381180 41038 156 54494
IL 0 0 0 199304 0 64039

Table 4
Tons of remaining commodities at suppliers with the removal of network components.

Removed component Sum of remaining commodities at supply nodes (tons)
311 324 325 327 333 339

Node 9 0 18960 91744 0 0 19740
Node 8 0 263776 0 17509 2048 0
Node 11 0 18960 71119 0 0 0
Link (1,7) 0 0 0 177628 0 64039
Link (9,11) 0 18960 71119 0 0 0
Link (2,5) 50244 3656 0 0 267 0
Link (8,4) 0 263776 0 0 2048 0
Link (2,8) 14793 157492 88627 0 0 0
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4. Concluding remarks

With regard to the three components of resilience capacity identi-
fied by Vugrin and Camphouse (2011), most freight transportation
network resilience studies focus on pre-disruption prevention invest-
ments via absorptive capacity or post-disaster network restoration
strategies via restorative capacity. And such is typically done by de-
fining system performance as a measure related to the serviceability of
the system (e.g., travel time/distance, flow, throughput) or a topolo-
gical measure related to the network structure (e.g. centrality, con-
nectivity, betweenness). This work, however, emphasizes adaptive ca-
pacity in the form of contingent rerouting strategies to manage the
supply-demand network after a disruptive event to lessen the total
economic impact.
More specifically, this work proposes an optimization formulation

to accommodate the flow through the residual network and maintain
the productivity of the economy of the desired region by (i) integrating
a multi-commodity network flow model, representing a multi-modal
freight transportation network, with a risk-based economic inter-
dependency model, to capture the propagation of the failure in a group
of interconnected industries, (ii) defining a measure of adaptive capa-
city to valuate rerouting strategies, and (iii) the model incorporates the
economic elements to study the disruption effects on the infrastructure
networks from other perspectives. The results provide insight to deci-
sion makers about the behavior of each commodity such that they may
adapt policies aligned with the behavior of the model (e.g., allocating
emergency warehouses for commodities whose economic loss increases

after implementing the adaptive capacity approach). Further, the for-
mulation provides a means to consider the final role of a freight
transportation network as the facilitator within the economy in plan-
ning for adaptive capacity after a disruption.
Part of a multi-modal freight transportation network connecting

Oklahoma to surrounding states has been considered to develop a sty-
lized case study in which supply nodes are located in the state of
Oklahoma and demand nodes are located in surrounding states. We
address the efficacy of implementing the adaptive capacity planning
formulation in Oklahoma when a scenario-based disruption disables a
particular network component for a month. Results suggest a successful

Table 5
Industry inoperability across six most important industries within the state of Oklahoma.

Removed component Industry

Food and beverage Petroleum and coal Chemical products Nonmetallic mineral Machinery mfg. Misc. mfg.

Node 9 0 9.00E-04 4.90E-03 0 0 1.50E-03
Node 8 0 1.16E-02 9.00E-04 1.20E-03 1.60E-03 8.00E-04
Node 11 0 9.00E-04 3.80E-03 0.00E+00 0 1.00E-04
Link (1,7) 0 1.00E-04 2.00E-04 8.90E-03 1.00E-04 4.50E-03
Link (9,11) 0 9.00E-04 3.80E-03 0 0 1.00E-04
Link (2,5) 5.10E-03 2.00E-04 2.00E-04 1.00E-04 2.00E-04 2.00E-04
Link (8,4) 0 1.16E-02 9.00E-04 3.00E-04 1.60E-03 8.00E-04
Link (2,8) 4.00E-04 1.16E-02 9.00E-04 1.20E-03 1.60E-03 8.00E-04

0.000

0.004

0.008

0.012
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Fig. 5. Graphical depiction of industry inoperability resulting from network component removal.

Table 6
Economic losses, in million USD, across the six most important industries within
the state of Oklahoma.

Removed
component

Industry Total
multi-
industry
impact

311 324 325 327 333 339 Others

Node 9 0.12 11.04 6.67 0.09 0.20 14.77 17.59 50.47
Node 8 0.24 146.24 1.22 2.47 11.90 7.95 159.32 329.33
Node 11 0.04 10.80 5.16 0.06 0.11 0.78 12.82 29.79
Link (1,7) 0.23 0.92 0.23 18.17 0.37 45.79 22.41 88.12
Link (9,11) 0.04 10.80 5.16 0.06 0.11 0.78 12.82 29.79
Link (2,5) 28.04 2.70 0.26 0.25 1.65 2.40 23.64 58.95
Link (8,4) 0.24 146.20 1.21 0.69 11.88 7.88 158.46 326.56
Link (2,8) 2.12 146.29 1.24 2.48 11.91 8.10 160.71 332.84
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avoidance of maximum potential loss in high dollar industries such as
Petroleum and coal products (324) and Miscellaneous manufacturing
(339), and a consequent static resilience in the economy of the state, as
the average maximum loss could be avoided by more than 50%. The
ultimate usefulness of such a model could lie in (i) assisting transpor-
tation planners in effective rerouting that minimizes impacts to certain
industries, and (ii) assisting decision makers in those industries how
certain disruptions and resulting adaptive planning may impact their
company when certain commodities do not arrive as planned. Though a
proportion of the total economic impact has been considered to seek
adaptive planning strategies in this study, further work should embed
larger social and community impacts in the problem formulation.
The real-world application of this work lies in informing a central

planner/policy maker to devise contingent rerouting strategies more

effectively to enhance the resilience of freight movement to maintain
the continuity of service for businesses using the multi-modal trans-
portation network. For example, in the case of a natural hazard that
affects the Port of Catoosa, one of the most important business eco-
nomic areas in Oklahoma, such a central decision maker could be re-
presented by the nine-member board that oversees the port [Business
View Magazine 2016]. These results suggest that it may be economic-
ally beneficial for policy makers to explore ways to reroute the com-
modity flow by facilitating contingent rerouting or incentivizing com-
panies to move commodities through alternative transportation modes
in case of a disruption to port dock operations. The proposed model
helps decision makers to prioritize the affected industry sectors when
devising contingent rerouting strategies to facilitate the flow of com-
modities during the disruption. For example, Miscellaneous manu-
facturing and Machinery freight are handled at the General Dry Cargo
dock, which handles the largest tonnage in the port. Hence, these sec-
tors would be vulnerable to any disruption that threatens the func-
tionality of the General Dry Cargo dock for the real-world operations of
the port. Similarly, any disruptions threatening the operations at Liquid
Bulk and Grains docks would interrupt the flow of Chemical products
and Food and beverage and tobacco products, respectively. The Port of
Catoosa is a major industrial hub in the Tulsa metropolitan statistical
area, which contributes to 33.4% of the State of Oklahoma's economy
[Tulsa Regional Chamber 2018], hence the options here are aimed at
benefiting the wider state economy through the port. The insights
gained from this paper can lead to better risk management strategies to
mitigate the effect of a multi-modal freight transportation disruption.
This initial formulation can be further improved by accounting for

Fig. 6. Interdependent economic losses in Oklahoma due to network component removal.

Table 7
Economic inoperability caused by the disruption after devising a contingent
rerouting strategy.

Removed
component

Industry

311 324 325 327 333 339

Node 9 2.00E-04 0 4.80E-03 0 0 0
Node 8 1.10E-03 7.20E-03 5.00E-03 8.00E-04 1.00E-04 5.00E-04
Node 11 2.00E-04 0 4.70E-03 0 0 0
Link (1,7) 0 0 1.00E-04 7.50E-03 0 1.00E-04
Link (9,11) 2.00E-04 0 3.60E-03 0 0 0
Link (2,5) 0 1.00E-04 1.50E-03 0 2.00E-04 0
Link (8,4) 1.10E-03 7.20E-03 5.00E-03 2.00E-04 1.00E-04 5.00E-04
Link (2,8) 1.50E-03 7.00E-03 5.20E-03 2.00E-04 1.00E-04 5.00E-04

Table 8
Economic losses, in million USD, within the state of Oklahoma after planning
for adaptive capacity.

Removed
component

Industry Total
multi-
industry
impact

e
R

311 324 325 327 333 339 Others

Node 9 0.85 0.41 6.57 0.03 0.05 0.42 3.00 11.32 0.78
Node 8 5.98 90.15 6.80 1.66 0.78 5.17 100.68 211.22 0.36
Node 11 0.85 0.40 6.34 0.03 0.05 0.41 2.92 10.98 0.63
Link (1,7) 0.02 0.37 0.11 15.26 0.10 0.58 7.33 23.78 0.73
Link (9,11) 0.84 0.31 4.83 0.02 0.04 0.32 2.36 8.72 0.71
Link (2,5) 0.02 1.82 2.06 0.02 1.43 0.30 3.28 8.92 0.85
Link (8,4) 5.98 90.12 6.79 0.44 0.78 5.12 100.10 209.33 0.36
Link (2,8) 8.42 87.77 7.09 0.45 0.78 5.21 99.48 209.22 0.37

0.000

0.002

0.004

0.006

0.008
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Fig. 7. Economic inoperability caused by the disruption devising a contingent
rerouting.
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the real-world intermodal container planning considerations and other
dynamic issues. Complementary models to plan for system resilience as

a function of absorptive and restorative capacity, as well as the adaptive
capacity-focused formulation proposed here, could more effectively
highlight the tradeoffs among different resilience capacity planning
perspectives. Further, the proposed integrated framework could be
extended to study the design of a resilient freight network considering
uncertain disruptions of multiple components (e.g., Alderson et al.,
(2013);Alderson et al., (2013)).
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Appendix

Table A1
Link capacities among the origin/destination nodes in the illustrative network (in tons) [ODOT, 2013].

Nodes 1 2 3 4 5 6 7 8 9 10 11

1 233333 241667 141667 516667
2 15000 54167 62500 41667 283333 308333 112500
3 29583 15417 250833 24167
4
5
6
7
8 316667 25000
9 150000 141667
10 1000000
11 133333 166667
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