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Introduction and Motivation

The US government has increasingly emphasized resilience plan-
ning for the country’s critical infrastructure systems. Presidential
Policy Directive 21 (White House 2013) states that critical infra-
structure “must be secure and able to withstand and rapidly recover
from all hazards,” where the combination of “withstanding” and
“recovering” from disruptions constitutes resilience. The resilient
operation of critical infrastructures is “essential to the Nation’s
security, public health and safety, economic vitality, and way of
life” (DHS 2013). DHS planning documents highlight terrorist at-
tacks, natural disasters, and man-made hazards, all of which could
exacerbate aging US infrastructure systems, particularly transpor-
tation infrastructure (e.g., roads, bridges, waterway facilities),
whose state of repair has been given a grade of D+ (ASCE 2017)
for several years.

Definitions, models, and measures of resilience pervade the lit-
erature (Hosseini et al. 2016), across the social sciences (Magis
2010; Sullivan et al. 2010; Aldrich 2012; Cutter et al. 2014),
engineering (Reed et al. 2009; Cimellaro et al. 2010; Ouyang

and Duenas-Osorio 2012; Francis and Bekera 2014; Nan and
Sansavini 2017), and risk contexts (Haimes 2009; Aven 2011),
to name just a few. Fig. 1 offers a paradigm for the performance
of a system before, during, and after a disruption (Henry and
Ramirez-Marquez 2012; Barker et al. 2013; Pant et al. 2014),
where performance over time is measured generally with φðtÞ
(e.g., traffic flow along a railway network). Highlighted in Fig. 1
are two primary dimensions of resilience: (1) vulnerability, or the
lack of ability of a system to withstand a disruption and maintain its
performance level, and (2) recoverability, or the ability of a system
to improve and recover system performance in a timely manner.
This work focuses on the vulnerability dimension of resilience,
particularly as it applies to networks. The adverse impact that a
disruption has on network performance is a function of the net-
work’s vulnerability (Newman 2005; Zio et al. 2008; Jonsson
et al. 2008; Zhang et al. 2011).

Vugrin and Camphouse (2011) define the resilience capacity
of a system as a function of its absorptive, adaptive, and restor-
ative capacities. Naturally, absorptive capacity deals with the ex-
tent to which a system is able to absorb shocks from disruptive
events and prevent collapse, implying that pre-disruption plan-
ning can increase absorptive capacity. An example of building
absorptive capacity is strengthening the bridges with continuous
spans during construction, or reconstruction, in the Northridge
area of San Fernando Valley in Los Angeles (Cooper et al.
1994). Adaptive capacity is the extent to which a system can
quickly adapt after a disruption by temporary means. Examples
of adaptive capacity include emergency debris removal from
transportation routes and temporary reconstitution of emergency
services (Bye 2013). In this paper, focus is given to technical
strategies to enhance adaptive capacity; alternative mitigation
strategies, such as behavioral modifications (e.g., employees
working from home to reduce traffic on damaged roads), are
not investigated. Finally, the restorative capacity of a system is
the extent to which it can recover from a disruption in a more
long-term manner, for example, the reconstruction of destroyed
infrastructure. As such, absorptive, adaptive, and restorative
capacities can be viewed as first, second, and third lines of
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defense, respectively (Hosseini and Barker 2016). Relative to
Fig. 1, absorptive and adaptive capacities address a system’s
vulnerability, where a system’s recoverability is a function of
its restorative capacity.

Resources engaged after a disruption encompass roadside
debris removal equipment (Aksu and Ozdamar 2014; Çelik
et al. 2015), construction crews (Averbakh 2012), repair crews
(Duque et al. 2016), and emergency response (Jacobson et al.
2012). Particularly for electric power networks, such resources
have included temporary equipment to replace disabled high
voltage transformers (Salmeron and Wood 2015), crews remov-
ing fallen objects causing shorted circuits (Wei et al. 2016), and
inserting backup power (e.g., generators) in the system (Division
of Emergency Management 2008). The assignment of and sched-
uling of these resources to disrupted network components is im-
portant (Duque et al. 2016; Arab et al. 2015; Aksu and Ozdamar
2014), though not many have studied such a spatially-located
resource allocation in an adaptive or restorative capacity context
(Akbari and Salman 2017; Görmez et al. 2011; Kasaei and
Salman 2016). By considering the worst disruption scenario that
may affect the network, we plan to allocate and schedule resour-
ces to increase the adaptive capacity of the network immediately
after disruption and, consequently, expedite the long-term
recovery.

This work provides a mixed integer linear programming (MILP)
formulation to allocate spatially located resources to improve a
network’s adaptive capacity. Three characteristics are integrated
into the formulation: (1) link criticality, or the importance of a link
in enabling the performance of the network; (2) network accessibil-
ity, or the extent to which capacity is degraded across links in the
network; and (3) network connectivity, or the extent to which
demand is being met at demand nodes. After a disruptive event,
the limited, spatially distributed resources are allocated to network
components to quickly engage the affected components by propor-
tionally improving their functionality. While these resources have
potentially only limited effectiveness, their optimal allocation can
significantly reduce vulnerability of the larger system in the imme-
diate term.

The organization of this paper is as follows. First, various tech-
niques for modeling absorptive, adaptive, and restorative capacity
are reviewed. Second, the optimization formulation is proposed for
integrating component criticality, accessibility, and connectivity.
Next, the optimization formulation is applied to several network
instances motivated by the 400 kV French electric power transmis-
sion network. Finally, conclusions, limitations, and directions for
future work are provided.

Methodological Background

There are two primary research streams related to the management
of network disruptions: (1) vulnerability measurement and reduc-
tion; and (2) recovery optimization.

Most work in measuring and reducing vulnerability addresses
absorptive capacity, or mitigation efforts to identify and fortify no-
des in advance of a disruption. Many techniques have been devel-
oped to measure network vulnerability and identify the important
network components contributing to vulnerability. Cohen et al.
(2000) introduce a criterion based on percolation theory to identify
critical nodes, the absence of which lead to disconnections in the
network. Vromans et al. (2006) examine the vulnerability of a rail-
way network to reduce the interdependencies between trains after a
disruption. Jenelius et al. (2006) introduces link importance and site
exposure indices which are divided into two groups: (1) an equal
opportunity perspective where all roads are equally important; and
(2) a social efficiency perspective where more frequently used
roads are considered more important.

One of the primary reasons to measure vulnerability is to under-
stand the extent to which a disruptive event affects network perfor-
mance to prepare the network for potential consequences. Instead
of single link or node disruption, Jenelius and Mattsson (2012)
adopt grids of uniformly shaped and sized cells, where each cell
represents the extent of an event disrupting any intersecting links.
Unlike single link failures, where the link flow and the redundancy
in the surrounding network determine the impacts, the vulnerability
to spatially spread events shows a markedly different geographical
distribution. Jenelius and Mattsson (2015) perform regional vulner-
ability analyses in large-scale road networks due to both single link
closures and area-covering disruptions.

Lempert and Groves (2010) focus on adaptive capacity, imple-
menting robust decision-making approaches to plan adaptive
strategies against catastrophic events. Using a simulation-based ap-
proach, they identify the different sets of vulnerable network com-
ponents that adversely impact network performance from various
perspectives. Francis and Bekera (2014) propose a resilience frame-
work to focus on the achievement of adaptive capacity along with
absorptive and restorative capacity enhancement. They quantify
adaptive capacity as the proportion of original system performance
retained after the new stable level of performance in the aftermath
of disruption. Particularly in power grid networks, Ghasemi and
Parniani (2016) propose an adaptive control algorithm to prevent
the overvoltage that may happen in the network immediately after
disruptions. Arghandeh et al. (2016) demonstrate some adaptive
capacity enhancement activities in the physical structure of power

Fig. 1. System performance across system states.
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grid networks (e.g., reinforcing towers and poles), increasing
the flexibility of the network by installing temporary means
(e.g., transformers and sensors) and prioritizing components with
fortification. Fang and Sansavini (2017) co-optimize power grid
expansion and installation of line switching devices to mitigate
the supply disservice in the aftermath of disruptions and enhance
resilience by system hardening and re-configurability. In transpor-
tation networks, Zhang et al. (2015) consider the topological and
spatial form of transportation networks and their impact on the flex-
ibility of the network to adapt to disruption during response. They
investigate the role of topological attributes of a transportation net-
work (e.g., grid, hub-and-spoke, scale-free, and small-world) in its
ability to cope with disruptions by temporary means or redirecting
routes to decrease network performance. El-Rashidy and Grant-
Muller (2014) propose an integrated method including exhaustive
optimization and fuzzy logic, combining different vulnerability
measures (traffic flow, capacity, length, flow, and free flow) to in-
troduce a unique index to increase the adaptive capacity of the
transportation networks after disruptions.

Work in recoverability optimization focusing on restorative
capacity is a burgeoning area of research. Nurre et al. (2012)
develop an integrated network design and scheduling model to
restore networks following an extreme disruptive event, determin-
ing restoration efforts by selecting a set of links that optimized
residual paths. Similarly, Nurre and Sharkey (2014) develop net-
work design and scheduling model to minimize the amount of
time required to reach a certain level of network performance.
Averbakh (2012) and Averbakh and Pereira (2012) consider the
problem of scheduling the restoration of a transportation network
with fixed restoration rate service units, minimizing restoration
time. Several other works have recently addressed inspection
and repair optimization in electric power networks (Xu et al.
2007; Arab et al. 2015, 2016).

As opposed to absorptive capacity (emphasizing decisions
during t ∈ ðt0; te� from Fig. 1) and restorative capacity (emphasiz-
ing decisions during t ∈ ðtd; tf�), work proposed here addresses
the short-term allocation of resources after a disruption to im-
prove adaptive capacity during t ∈ ðte; td�. The allocation of re-
sources during this timeframe has little treatment in the literature
[e.g., developing short-term routes after a disruption (MacKenzie
et al. 2012; Chen et al. 2014)].

Problem Formulation

Consider a directed network G ¼ ðN;AÞ, where N is the set of no-
des and A ⊆ N × N is the set links. There is a set of supply nodes
Nþ ⊆ N, a set of demand nodes N− ⊆ N, and a set of transition
nodes N¼ ⊆ N. Each supply node i ∈ Nþ can supply amount oi in
each time period, and each demand node i ∈ N− demands amount
bi in each time period.

Each link ði; jÞ ∈ A has a defined predisaster capacity uijte and a
precalculated flow value based on the summation of flow values
across supply and demand nodes before the disruptive event that
occurs at time te in Fig. 1. Without loss of generality, components
in the context of this research refer to links, as any node failure can
be represented by an appropriate set of link failures.

Let A 0 ⊆ A denote the set of links in the network that are im-
pacted by a disruptive event at time te. A link disruption is modeled
by a reduction in link capacity. A reduction to a capacity level of 0
represents a total loss of the link. There exists a set of adaptive
capacity resources that can be allocated promptly after a disruptive
event to begin immediate-term recovery of system functionality.
Each resource can send a specific number of services to disrupted

links. Each service may have a specific processing time and com-
plete its task in any time period t ∈ f1; : : : ; Tg, and the first time
period starts from te, immediately after the occurrence of a disrup-
tive event, and the last time period, T, ends at td, when short-term
response ends. We define R resource types. Each has a service
capacityMr denoting the number of available resources of type r ∈
f1; : : : ;Rg and has a number of services Ur that can be performed
by resource type r ∈ f1; : : : ;Rg. In electric power networks, each
of these resources might refer to a set of work crews that tempo-
rarily (1) harden distribution links; or (2) reinforce towers and poles
to prevent cascading effects and overvoltage disruptions. The
capability of each set of work crews to fortify a disrupted link de-
pends on, for example, the experience of the technicians and the
quality of their equipment. Network components are located in
a set of spatial clusters s ∈ f1; : : : ; Sg that aid in the assignment
of these resources, and the resources allocated to cluster s can only
serve the disrupted components in that cluster. It is assumed that
there are limited available resources that can be allocated to min-
imize the adverse effects of a disruption in the first few time periods
after a disruptive event. These resources temporarily support the
damaged network and alleviate the severity of the adverse effects
on the components. Furthermore, resources allocated to reduce vul-
nerability may more effectively reduce the subsequent longer-term
time and costs of recovery.

The three primary components of the optimization problem
proposed here for assigning adaptive capacity resources are:
(1) criticality; (2) accessibility; and (3) connectivity. For criticality,
the importance of each component is measured such that more im-
portant network components are prioritized to increase adaptive
capacity in the minimum possible time horizon. For accessibility,
the effects of the disruption on component capacity is measured and
emphasized. For connectivity, unmet demand for critical demand
nodes is addressed. Previous work (Ouyang et al. 2012; Nurre
et al. 2012; Demirel et al. 2015) explores the relationship between
connectivity and accessibility; this work includes the role of criti-
cality, and its relationship to connectivity and accessibility, during
short-term response.

Criticality

The criticality of network component ði; jÞ ∈ A 0 is primarily a
function of its importance in the network. The importance of a com-
ponent, measured on [0,1] with values close to 1 suggesting greater
importance, can be measured from multiple perspectives. Several
authors have proposed importance measures based on the connec-
tivity of the network when the component is removed, among other
graph-theoretic measures (Holme et al. 2002; Albert et al. 2004;
Holmgren 2006; Johansson and Hassel 2010; Johansson et al.
2011; Wang et al. 2013). Several authors have explored measures
that quantify the importance of components to flow along the net-
work (Nagurney and Qiang 2007a, b, 2008; Rocco et al. 2010;
Nicholson et al. 2016).

Each network component has a certain importance measure
value, where Iπij is the importance measure calculated for ði; jÞ ∈
A of type π, where the πth importance measure represents one of
many differing perspectives on importance [e.g., maximum flow
count, edge centrality, and edge flow importance measures
(Nicholson et al. 2016)]. The use of Iπij in Eq. (1) is to aid in under-
standing component criticality prior to the actual allocation of re-
sources to the clusters. Values of Iπij closer to 1 would rank link
ði; jÞ as more critical in terms of receiving adaptive capacity serv-
ices sent from the allocated resource. The criticality coefficient
is captured in the objective function with Eq. (1), where yrsijt is
a binary variable equal to 1 when the processing time, pr, for
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resource r ∈ f1; : : : ;Rg to service link ði; jÞ in cluster s ∈
f1; : : : ; Sg is completed at time period t and 0, otherwise

Iπijy
rs
ijt ð1Þ

In this paper, we focus on links that are important to the
aggregate flow delivered to all demand nodes, and use three
(pre-disruption) flow-based importance measures proposed by
Nicholson et al. (2016): (1) max flow edge count, IMFcount ¼
½1=nðn − 1Þ�Ps̄;t̄∈Vμs̄ t̄ði; jÞ, where μs̄ t̄ði; jÞ is a binary parameter
and equals 1 if link ði; jÞ is used in a given source-sink max flow
path; (2) edge flow centrality, IFlow ¼ ½Ps̄;t̄∈V ωs̄ t̄ði;jÞ=

P
s̄;t̄∈V ωs̄ t̄�,

where ωs̄ t̄ði; jÞ is the flow on link ði; jÞ for all possible source-sink
paths and ωs̄ t̄ is the maximum feasible flow from source s̄ to sink t̄
for any source-sink path s̄, t̄ ∈ V; and (3) flow capacity rate,
IFCR ¼ ½1=nðn − 1Þ�½Ps̄;t̄∈V ωs̄ t̄ði; jÞ=cij�, where cij is the capacity
of link ði; jÞ.

Accessibility

Morris et al. (1979) introduce accessibility as the ease whereby
flow can reach from one location to another. In vulnerability analy-
ses, both single component and area-covering failures have
been studied (Berdica and Mattsson 2007; Jenelius and Mattson
2012). However, focusing on single component failure or a location
failure may not be an appropriate method in origin/destination or
supply/demand problems due to the nature of such networks.
Instead of considering the accessibility of single components or
a certain area, this paper maximizes the accessibility of the entire
network by adding adaptive capacity to disrupted links. The acces-
sibility of link ði; jÞ ∈ A 0 prior to the occurrence of a disruptive
event is measured by its predisaster capacity

Vijte ¼ uijte ð2Þ

Shown in Eq. (3) is the comparison of (1) the network operating
under the post-disruption performance (its performance after the
disruptive event without taking any response or recovery action);
and (2) its enhanced performance with the implementation of the
adaptive capacity resource assignment strategy. First, the change in
the capacity of components and subsequent network degradation
are calculated. Second, as the network components are spatially
clustered with adaptive capacity resources located in those clusters,
resources are dispatched to temporarily adapt the network to main-
tain its baseline performance level.

Eq. (3) defines Vijt, the accessibility measure for link ði; jÞ ∈ A 0
after disruption. In this paper, Vijt can be interpreted as the capac-
ity of a disrupted link ði; jÞ after its fortification process is com-
pleted. Baseline network performance (its performance before the
disruptive event) is measured immediately prior to te as depicted
in Fig. 1. The fully disrupted network performance is measured at
time t ∈ f1; : : : ;Tg. As such, uijte is the capacity on link ði; jÞ
before the disruptive event, and uijtd is the capacity of link ði; jÞ
at time td.

The amount of performance degradation for link ði; jÞ in each
time period t is mitigated by the factor Hr

ij

P
t
c¼1 y

rs
ijc, where

0 ≤ Hr
ij ≤ 1 measures the extent to which the assignment of re-

source r ∈ f1; : : : ;Rg to component ði; jÞ increases accessibility
and

P
t
c¼1 y

rs
ijc is 1 if the processing time of component ði; jÞ in

cluster s is completed in the time period c, c ∈ f1; : : : ; tg, by
resource r

Vijt ¼ uijtd þ
�XR

r¼1

XS
s¼1

Hr
ij

Xt

c¼1

yrsijc

�
ðuijte − uijtdÞ ð3Þ

Connectivity

Connectivity is a graph theoretic measure of the structure of a net-
work (Demirel et al. 2015). Studies on connectivity enhancement
are performed with a broad range of connectivity measures such as
diameter, number of cycles, cost, detour index, pi index, eta index,
theta index, and average nearest neighbors’ degree (Hansen 1959;
Waters 2006; Jenelius et al. 2006; Erath et al. 2009; Rodrigue et al.
2013; TDM 2013; Sullivan et al. 2010; Demirel et al. 2015). In
origin/destination problems, enhanced connectivity leads to less
unsatisfied demand when the network is disrupted.

In this work, the connectivity of a disrupted network is en-
hanced by reducing the difference between baseline and disrupted
aggregate flows, or the total amount of flow that arrives to the de-
mand nodes (Nurre et al. 2012). This is calculated in Eq. (4), where
φite is a parameter representing the aggregate flows reaching
demand node i prior to a disruptive event at time te, and φit is a
variable that quantifies the aggregate flows reaching to demand
node i ∈ N− during t ∈ f1; : : : ; Tg. So that Eq. (4) represents a
proportional value that is commensurate with other terms in the
subsequent objective function, φite is included in the denominator

μtwi
ðφite − φitÞ

φite

ð4Þ

The parameter wi is an importance weight assigned to demand
node i. Such an importance weight could be calculated from a
graph theory measure (e.g., centrality), by an economic index
(e.g., economic potential), or some other decision-maker-driven
value (e.g., a hospital may have a higher priority than a residential
location) (Demirel et al. 2015; Nurre et al. 2012). In this paper, each
demand node is assigned a weight based on its priority, and the
demand node within more populated areas is considered a higher
priority relative to other demand nodes. The parameter μt is the
weight associated with the performance of the network in each time
period t.

Model Formulation

The objective function and constraints considered in this work re-
present the integration of criticality, accessibility, and connectivity,
with the goal being to assign spatial resources to improve the adap-
tive capacity of a network after a disruption.

The variables in the model formulation are divided into three
categories: (1) network flow variables; (2) resource allocation var-
iables; and (3) resource assignment variables. For ði; jÞ ∈ A 0 and
for t ∈ f1; : : : ; Tg, xijt is the network flow variable on link
ði; jÞ at time t, and φit is a continuous variable for each demand
node i ∈ N−, representing the amount of demand that is met at time
t. The resource allocation variable is binary variable zrs for r ∈
f1; : : : ;Rg and s ∈ f1; : : : ; Sg, which indicates resource r is allo-
cated to spatial cluster s. The resource assignment variable yrsijt is a
binary variable for ði; jÞ ∈ A 0, s ∈ f1; : : : ; Sg, r ∈ f1; : : : ;Rg that
represents that link ði; jÞ from spatial cluster s is serviced by re-
source r. The sets, parameters, and variables used in the following
problem formulation are found in the Notation list at the end of
the paper.

The objective function for the short-term adaptive capacity
resource allocation problem in Eq. (5) minimizes (1) the
disruptive impacts to the more critical components withP

ði;jÞ∈A 0
P

R
r¼1

P
S
s¼1

P
T
t¼1 −Iπijyrsijt (criticality); and (2) the unsat-

isfied demand with
P

i∈N−
P

T
t¼1 μtwi½ðφite − φitÞ=φite � (connec-

tivity). Accessibility is addressed by Eq. (11). Furthermore,
a weighting factor could be added to each of these terms to
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model tradeoffs between component criticality and unsatisfied
demand

min
X

ði;jÞ∈A 0

XR
r¼1

XS
s¼1

XT
t¼1

− Iπijy
rs
ijt þ

X
i∈N−

XT
t¼1

μtwi
ðφite−φitÞ

φite

ð5Þ

X
j∶ði;jÞ∈A

xijt −
X

j∶ðj;iÞ∈A
xjit ≤ oi ∀ i ∈ Nþ; ∀ t ∈ f1; : : : ;Tg ð6Þ

X
ði;jÞ∈A

xijt −
X
ðj;iÞ∈A

xjit ¼ 0 ∀ i ∈ N¼; ∀ t ∈ f1; : : : ; Tg ð7Þ

X
ði;jÞ∈A

xijt −
X
ðj;iÞ∈A

xjit ¼ −φit ∀ i ∈ N−; ∀ t ∈ f1; : : : ;Tg ð8Þ

0 ≤ φit ≤ bi ∀ i ∈ N−; ∀ t ∈ f1; : : : ; Tg ð9Þ

0 ≤ xijt ≤ uijte ∀ ði; jÞ ∈ A=A 0; ∀ t ∈ f1; : : : ; Tg ð10Þ

0 ≤ xijt ≤ Vijt ∀ ði; jÞ ∈ A 0; ∀ t ∈ f1; : : : ; Tg ð11Þ

XS
s¼1

zrs ≤ Mr ∀ r ∈ f1; : : : ;Rg ð12Þ

XR
r¼1

zrs ≤ 1 ∀ s ∈ f1; : : : ; Sg ð13Þ

XT
t¼1

X
ði;jÞ∈A 0

�
1þ

�
t − ðl − pr þ 1Þ

T

��
yrsijt ≤ Urzrs

∀ s ∈ f1; : : : ; Sg; ∀ r ∈ f1; : : : ;Rg ð14Þ

XS
s¼1

XR
r¼1

XT
t¼1

yrsijl ≤ 1 ∀ ði; jÞ ∈ A 0 ð15Þ

yrsijt ≤ θsij ∀ ði; jÞ ∈ A 0;

∀ r ∈ f1; : : : ;Rg; ∀ s ∈ f1; : : : ; Sg; ∀ t ∈ f1; : : : ; Tg
ð16Þ

Xpr−1

t¼1

yrsijt ¼ 0 ∀ ði; jÞ ∈ A 0;

∀ r ∈ f1; : : : ;Rg; ∀ s ∈ f1; : : : ; Sg ð17Þ

zrs ∈ f0; 1g ∀ r ∈ f1; : : : ;Rg; ∀ s ∈ f1; : : : ; Sg ð18Þ

yrsijt ∈ f0; 1g ∀ r ∈ f1; : : : ;Rg;
∀ s ∈ f1; : : : ; Sg; ∀ ði; jÞ ∈ A; ∀ t ∈ f1; : : : ;Tg ð19Þ

xijt ≥ 0 ∀ ði; jÞ ∈ A; ∀ t ∈ f1; : : : ;Tg ð20Þ

φit ≥ 0 ∀ i ∈ N−; ∀ t ∈ f1; : : : ; Tg ð21Þ

Eqs. (6)–(8) are network flow constraints over all available links
in the network in time period t. According to Fig. 1, a disruptive
event occurs at time period te, and the network performance de-
creases until it reaches its minimum performance at time td.
Eq. (6) ensures that flow generated from supply nodes does not
exceed their supply oi, i ∈ Nþ. Eq. (7) ensures that no flow is

generated from or delivered to transmission nodes. Eq. (8) delivers
the amount of flow that satisfies demand nodes while not exceeding
their demands bi, i ∈ N− in Eq. (9). The flow of an available link
does not exceed its capacities, as ensured by Eqs. (10) and (11). In
Eqs. (12) and (13), zrs is a binary variable that equals 1 when re-
source r ∈ f1; : : : ;Rg is allocated in cluster s ∈ f1; : : : ; Sg and 0
otherwise. These two constraints ensure that the number of allo-
cated resources does not exceed the number of available resources,
Mr, and only one resource is allowed to be allocated to each cluster,
respectively. Each allocated resource in each cluster assigns a spe-
cific number of services to the most critical disrupted components
in that cluster. For each cluster, Eq. (14) ensures that the number of
disrupted components being fortified by the allocated resource in
each time period does not exceed its service capacity. It is assumed
that a resource cannot strengthen adaptive capacity unless it is al-
located to a cluster, and when it is allocated to a cluster, it is a can-
didate for being assigned to a disrupted component. Eq. (15)
ensures that each disrupted link is scheduled at most to one service
sent from the allocated resource. Eq. (16) ensures that an allocated
resource to a cluster is only allowed to service the disrupted links in
that cluster. Eq. (17) is a logical constraint that ensures that
strengthening adaptive capacity cannot be performed earlier than
the required processing time, pr, or the time required for any ser-
vice sent by resource r ∈ f1; : : : ;Rg to a disrupted link. Finally,
Eqs. (18)–(21) describe the nature of the decision variables.

Case Study: 400-kV French Power Transmission

The proposed formulation is exemplified with reference to a power
transmission network in France, extracted from topological data for
the 400-kV transmission lines of RTE (2013). According to the de-
tailed description extracted from RTE (2013), this network is an
undirected graph with 171 substations (nodes) and 220 transmis-
sion lines (links) summing up to more than 28,387 km. There
are 26 generators which generate power and 145 distributers which
receive power. Some of the generators and distributers also transmit
power from other generators to distributers. From a topological per-
spective, the weights of the links, which are assumed as their capac-
ity, is identical. However, from a resilience point of view, each link
is assigned a level of criticality. Following Fang et al. (2014), only
power plants with installed capacities more than 1,000 MW are
considered.

A modified version of the disrupted French transmission net-
work was produced by integrating the approaches of Alipour et al.
(2014) and Fang et al. (2014). The transmission network is depicted
in Fig. 2, which shows the relationships among pairs of nodes, the
number of links, and the spatial location of substation nodes. The
capacity of each transmission line in the undirected network is
6,000 MW, and the total network flow and aggregate flow for un-
disrupted network are 306,253 and 84,988 MW, respectively.

Some structural characteristics of the French transmission net-
work have been provided, including the following: mean node de-
gree hki, maximum node degree kmax, the mean shortest path hli,
the cluster coefficient C, and the graph diameter d (Alipour et al.
2014). These characteristics suggest that the transmission network
is a sparse network with average degree of 3.05, with a number of
links L ¼ 220 ≪ N2 ¼ 29,241. The clustering coefficient of 0.279
and mean shortest path of 6.61 are both greater than what would be
expected from a random network (Rosato et al. 2007), suggesting
that the French transmission network is a small world network,
where most nodes are not connected to one another but can be
reached through a few nodes that play the role of “hubs.”According
to Rosato et al. (2007) and Solé et al. (2008), such a transmission
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network is fragile to disruptive events. Consequently, identifying
the most critical components and enhancing their adaptive capacity
is of great significance to manage network resilience.

Simulated Disruption

To maximize the adaptive capacity of the 400-kV French transmis-
sion network, we extend an operational scenario to include infor-
mation about (1) disrupted network components; (2) the level of
disruptions; (3) number of available adaptive capacity resources;
and (4) their impact on reducing the severity of disruptions. The
spatial clusters to develop set S could be derived by a number
of means, including government zones or decision making areas
of authority. We make use of a clustering method, of which three
were considered: hierarchical clustering, k-means clustering, and
density based spatial clustering of application with noise
(DBSCAN). In this application, there is an advantage of using
DBSCAN over using other methods for potential locations alloca-
tion. The disrupted locations of the French 400-kV transmission
network are scattered throughout the country. According to deci-
sion maker preferences and the horizon of the response phase,
DBSCAN clusters the disrupted links that are accessible by a re-
source in the response phase time horizon. We assume that the total
number of resources are sufficient for each possible set of clusters
identified by DBSCAN, yet the number of each type of resource
may not be sufficient for their assignment to all clusters. Unlike
k-means and hierarchical clustering, DBSCAN relies on a density

based notion and can identify clusters of arbitrary shape (Ester
et al. 1996).

Start and end points are considered to be the objects that are
geographically clustered. However, the lengths of the links in be-
tween are not equal, especially in transportation networks, and this
inequality may lead to biased clustering. To avoid this issue, a set of
virtual nodes generated links with equal unique length, an example
of which is shown in Fig. 3 (Kriegel and Pfeifle 2005).

For illustrative purposes, a hypothetical spatially-confined sce-
nario is assumed to occur within the northeast of France (e.g., an
earthquake), as illustrated in Fig. 4. The disruptive event is assumed
to be static (i.e., a design-based accident). DBSCAN classified the
network into eight clusters, and outlier nodes are considered in their
neighboring clusters. As the number of services each resource can
send to disrupted links is limited, there are limitations in the num-
ber of disrupted links that each type of resource can fortify in each
cluster. Hence, prioritizing components based on their criticality is
of interest. It is assumed that 48% of links in the network are
disrupted. There are four types of resources, f1; 2; 3; 4g, with
(1) different fortifying process times, pr, such that ðp4 ¼ 3Þ >
ðp1 ¼ 2Þ > ðp2 ¼ 1Þ ¼ ðp3 ¼ 1Þ, where each time period is half
an hour; and (2) different fortifying capabilities are drawn from uni-
form distributions such that H1

ij ∈ Uð0.6; 0.75Þ, H2
ij ∈ Uð0.45;

0.59Þ, H3
ij ∈ Uð0.3; 0.44Þ, H4

ij ∈ Uð0.15; 0.29Þ. Examples of
specifying resources and capabilities include (1) limiting the num-
ber of transformers that can be substituted with disrupted trans-
formers temporarily (such transformers may not perform as well
as the originals, yet can be substituted immediately after disrup-
tions); (2) enhancing the black-start capacity of generators, which
leads to partial performance of disrupted generators before they are
returned to fully operational status in the network; and (3) adjusting
or removing certain protective systems that may result in not using
the whole residual network capacity in the aftermath of disruptions
(e.g., undervoltage, underfrequency, synchronization checks)
(National Research Council 2012).

The average number of available resources is M̄r ¼ 2, and the
average number of services is Ūr ¼ 3. Table 1 illustrates the char-
acteristics of each resource by indicating their effect on network
performance if only one type of resource is used. Based on Table 1,
the resource type r ¼ 3 has the shortest processing time and the
resource type r ¼ 1 has the largest fortifying capability (i.e., the
aggregate flow after the its implementation at t ¼ 3, is larger than
the aggregate flow resulting from the application of the other re-
sources). Although resource type r ¼ 4 has the longest processing
time and the weakest fortification capability, this type of resource
may be used in the absence of other types of resources.

Because of the nature of the short term response, the length of
the adaptive capacity time horizon is much shorter than the recov-
ery time horizon. Hence, we consider some assumptions to specify
adaptive capacity characteristics: (1) when a resource, r ∈
f1; : : : ;Rg, is assigned to a cluster, s ∈ f1; : : : ; Sg, it cannot be
reassigned to another cluster, s 0 ∈ f1; : : : ; Sg; (2) discussed previ-
ously, the distance between any two clusters s 0, s ∈ f1; : : : ; Sg
makes it impractical for a resource in one cluster to service the

Fig. 2. 400-kV French power transmission network.

Fig. 3. Link division in a sample network.
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disrupted components in other clusters; (3) all services are released
to serve disrupted components immediately after a disruptive event;
and (4) when each service is assigned to a disrupted component, it
cannot be reassigned to any other disrupted component.

Computational Experiment

The model provides the optimal solution for the 400-kV French
transmission network and is solved with Python 2.7 using Gurobi
6.5.2. The computational time is in the order of few seconds, sug-
gesting that the model is potentially useful for real-time post-
disruption planning.

The subsequent analysis considers different importance mea-
sures for link criticality and different weights for demand nodes.

Link Criticality

As link importance measures, Iπij, were discussed generally in the
section entitled “Criticality,” earlier in this chapter, this application
makes use of three (predisruption) flow-based importance mea-
sures that account for different perspectives on component contri-
bution to network performance measure all node pairs maximum
flow (Nicholson et al. 2016): (1) max flow edge count (IMFcount

ij ), or
the total number of times a given edge is utilized in all o-d pairs
max flow problems, (2) edge flow centrality (IFlowij ), or the sum of
flow on ði; jÞ ∈ A 0 for all possible o-d pair max flow problems di-
vided by the sum of all pairs max flows [a variation on the node
centrality measure by Freeman et al. (1991)], and (3) flow capacity
rate (IFCRij ), or a measure of how close ði; jÞ ∈ A 0 is to becoming a
potential bottleneck based on the difference between max flow
amount and capacity. We also consider a scenario where no impor-
tance measure is assumed, our concern is only the second element of
objective function. Analyses described subsequently will illustrate
how these different perspectives alter adaptive capacity strategies.

Weights for Demand Nodes and Time Periods

We define two corresponding time-based weight procedures.
Descending scaled weight is defined by placing more importance
on adding adaptive capacity in earlier time periods (e.g., μh > μl,
for ∀h < l when h, l ∈ f1; : : : ; Tg, μh ¼ 1 − ½h=ðT þ 1Þ�).
Ascending scaled weight is defined by placing more attention on
network performance in later time periods (e.g., μh > μl, for
∀h > l, when h, l ∈ f1; : : : ; Tg, μh ¼ 1þ ½h=ðT þ 1Þ�), such that
the transition to restoration may occur more smoothly.

Fig. 4. French power transmission network divided into eight spatial clusters identified with DBSCAN, with spatial disruption centered in cluster
s ¼ 1.

Table 1. Aggregate flow across resources processing time r ∈ f1; : : : ;Rg

Processing
time pr

Resource

r ¼ 1 r ¼ 2 r ¼ 3 r ¼ 4

2 1 1 3

t ¼ 1 2,158 2,158 2,158 2,158
t ¼ 2 2,158 15,524 14,917 2,158
t ¼ 3 16,700 26,965 25,805 2,158
t ¼ 4 16,700 35,003 33,915 13,318
t ¼ 5 29,751 42,473 38,863 13,318
t ¼ 6 29,751 45,364 40,851 13,318
t ¼ 7 40,467 45,837 40,912 21,249
t ¼ 8 40,467 45,866 40,912 21,249

© ASCE 04018022-7 J. Infrastruct. Syst.
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As for the weights of the demand nodes, wi, i ∈ N−, we con-
sider scaled weights (i.e., specific to particular demand nodes), and
constant weights (i.e., that assume similar importance across
demand nodes). As such, we explore how focusing on meeting de-
mand in particularly critical demand nodes alters adaptive capacity
strategies. The scaled weights of demand nodes are utilized such
that nodes in high populated areas are of greater significance than
others (e.g., demand nodes are divided into two categories, rela-
tively high populated demand nodes, and relatively low populated
areas). The weight of demand nodes in high populated areas are as
twice that of demand nodes located in low populated areas.

Computational Results

Tables 2–7 present results of the adaptive capacity formulation on
the French power network example, including (1) the aggregate
flow in each time period, calculated as

P
i∈N−φit; (2) the number

of links that are active at time period T, calculated as
P

ði;jÞ∈A 0EijT ,
where EijT is a binary variable that is 1 if xijT > 0 and 0 otherwise;
and (3) the number of demand nodes that receive flow, calculated asP

i∈N−DiT , where DiT is a binary variable that is 1 if φiT > 0 and 0
otherwise.

The effects of the three weights are examined: wi, i ∈ N− for
weighting the importance of demand nodes, μt, t ∈ f1; : : : ;Tg
for weighting network performance in each time period, and Iπij
for expressing the criticality of links. Each take on either a scaled
value (following a specific calculation) or a constant value (all
times periods, links, or demand nodes are weighted equally).

Constant weights, wi ¼ 1 and μt ¼ 1, for the demand node and
time periods in Table 2 model the objective to pass maximum
power throughout the residual network. Therefore, the model deliv-
ers maximum flow at the end of the fortification phase, in

comparison to the maximum flow delivered at the end of fortifica-
tion phase in Tables 2–6. As shown in Table 2, there is a potential
issue in applying importance measures in the model formulation
when constant weights are used (i.e., similar results are achieved
by not using any importance measure and by using IMFcount

ij ).
On the other hand, the use of the other importance measures re-
sulted in decreased performance of the adaptive capacity strategies.
That is because the goal of fortification is to adapt to the immediate
adverse impact of the disruption. Therefore, each fortified link is
not going to be fully functional until the end of the longer-
term recovery process, which reduces the efficiency of using the
importance measures in the model in the short term. However,
fortifying links with a higher criticality may not improve the

Table 2. Aggregate flow, number of active links, and demand nodes
receiving flow across link importance measures: μt and wi constant

Time IMFcount IFlow IFCR Constant

t ¼ 1 2,158 2,158 2,158 2,158
t ¼ 2 6,968 6,968 7,100 6,968
t ¼ 3 20,305 20,362 20,233 20,305
t ¼ 4 26,843 26,815 26,902 26,843
t ¼ 5 35,090 35,222 34,814 35,090
t ¼ 6 37,366 37,377 37,169 37,366
t ¼ 7 42,877 42,706 42,745 42,877
t ¼ 8 43,105 42,952 42,973 43,105
DiT (total active demand node) 140 139 139 138
EijT (total active links) 201 199 196 203
Fortified critical components 29 27 27 26

Table 3. Aggregate flow, number of active links, and demand nodes
receiving flow across link importance measures: μt constant and wi scaled

Time IMFcount IFlow IFCR Constant

t ¼ 1 2,158 2,158 2,158 2,158
t ¼ 2 5,190 4,872 4,884 5,190
t ¼ 3 17,339 16,965 17,489 17,339
t ¼ 4 23,985 23,604 23,903 23,588
t ¼ 5 33,074 33,524 33,135 33,903
t ¼ 6 35,954 35,754 35,696 36,617
t ¼ 7 41,992 41,983 41,738 41,738
t ¼ 8 42,220 42,098 41,966 41,966
DiT (total active demand node) 134 136 137 136
EijT (total active links) 189 200 202 205
Fortified critical components 26 24 25 22

Table 4. Aggregate flow, number of active links, and demand nodes
receiving flow across link importance measures: μt ascending and wi
constant

Time IMFcount IFlow IFCR Constant

t ¼ 1 2,158 2,158 2,158 2,158
t ¼ 2 6,968 6,687 6,968 6,968
t ¼ 3 20,305 20,411 20,388 20,362
t ¼ 4 26,843 26,856 26,872 26,815
t ¼ 5 35,109 35,263 35,234 34,927
t ¼ 6 37,368 37,455 37,476 37,295
t ¼ 7 42,877 42,540 42,480 42,877
t ¼ 8 43,105 42,768 42,776 43,105
DiT (total active demand node) 140 139 140 139
EijT (total active links) 194 207 194 200
Fortified critical components 28 23 23 23

Table 6. Aggregate flow, number of active links, and demand nodes
receiving flow across link importance measures: μt ascending and wi scaled

Time IMFcount IFlow IFCR Constant

t ¼ 1 2,158 2,158 2,158 2,158
t ¼ 2 4,884 4,884 4,884 4,884
t ¼ 3 17,033 17,489 17,033 17,033
t ¼ 4 23,985 23,024 23,302 23,985
t ¼ 5 33,250 34,018 32,494 34,018
t ¼ 6 35,954 36,875 35,549 36,875
t ¼ 7 41,992 41,992 41,738 41,992
t ¼ 8 42,220 42,220 41,966 42,220
DiT (total active demand node) 136 134 136 134
EijT (total active links) 199 194 196 212
Fortified critical components 28 26 26 26

Table 5. Aggregate flow, number of active links, and demand nodes
receiving flow across link importance measures: μt descending and wi
constant

Time IMFcount IFlow IFCR Constant

t ¼ 1 2,158 2,158 2,158 2,158
t ¼ 2 7,291 6,968 6,968 7,100
t ¼ 3 20,332 20,388 20,277 20,351
t ¼ 4 27,116 27,007 26,856 26,778
t ¼ 5 34,937 35,328 35,185 35,263
t ¼ 6 36,705 37,112 37,456 37,456
t ¼ 7 42,589 42,502 42,493 42,646
t ¼ 8 42,837 42,602 42,572 42,739
DiT (total active demand node) 137 145 138 137
EijT (total active links) 192 196 196 197
Fortified critical components 27 24 25 24
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network performance during the short term assessed in this study
(i.e., t ≤ td), but as the critical links priorities in response phase are
higher than other links (i.e., the coefficient of critical links in the
objective function are greater than other links) they are going to be
proportionally recovered at the beginning of recovery phase
(i.e., t > td), which may enhance the recovery process.

Among the implemented importance measures, IMFcount
ij shows

the best performance in guiding the fortification of links as it iden-
tifies components that are shared in the maximum number of
source-sink paths regardless of the percentage of the network flow
that the component carries in the network. Hence, fortifying the
components with maximum IMFcount

ij brings a great number of dis-
rupted paths into partial activation. However, as the outcome of the
response phase is to proportionally restore components, the links
that are important according to IFlowij and IFCRij in the fully opera-
tional network may not be identified as critical in the fortified net-
work. This is due to the fact that their capacity is not necessarily
fully exploited in the partially operational network.

Fortifying links with a higher criticality may not improve the
network performance during the short term assessed in this study
(i.e., t ≤ td), but as the critical link priorities in response phase are
higher than other links (i.e., the first part of the objective function),
they are going to be proportionally recovered at the beginning of
recovery phase (i.e., t > td). This may enhance the recovery pro-
cess. For example, Tables 2–7 suggest that the implementation of
importance measures may not always result in better network
performance. However, when compared to the conditions where
only the second element of the objective function is considered,
the application of the importance measures increases the number
fortified critical components and reduces the long-term recovery
horizon resulting in increased system resilience.

From the comparison of Table 2 with Tables 3, 6, and 7, it
appears that the priority weights of demand nodes have negative
effects on the short-term response. Nurre et al. (2012) mention that
a “priority-based” plan, where wi is scaled, is aligned with a
“demand-based” long-term recovery plan, where restoration
efforts minimize the total demand dissatisfaction in the network
(i.e., “priority-based” is also an optimal solution for the model with
the “demand-based” restoration formulation). However, when we
consider scaled wi in strengthening the short-term adaptive capac-
ity, the same results are not observed because the length of the time
horizon, te < t < td, is not extended enough to fulfill the resource
allocation to all the prioritized demand nodes. Due to the interplay
between the incomplete short-term response and the assumed char-
acteristics of the resources, the priority-based results of this study
conflict with the general priority-based results from the literature.
However, in Table 3, applying importance measures to the model

with scaled demand node weights leads to results that are more
aligned with the demand-based formulation, where the goal is to
maximize the aggregate flow reaching to demand nodes. In Table 3,
the application of importance measures enhances adaptive capacity,
suggesting that the aggregate flow increases (i.e., the total unsat-
isfied demand decreases), and the total DiT increases (the number
of demand nodes receiving flow increases). Recall that the impor-
tance measures lead the model to maximize the aggregate flow as
well as the number of satisfied prioritized demand nodes by focus-
ing on the links that are responsible for a large proportion of flow in
the network.

In the limited time horizon, the goal of fortifying adaptive
capacity is to reach the maximum possible performance of the de-
mand nodes (aggregate flow) at any time step t ∈ f1; : : : ;Tg. One
might imagine that the level of network performance at time T is of
a greater significance than prior time periods as longer term recov-
ery follows. Therefore, the higher level of network performance at
time T may lead to more effective recovery. However, in some case
studies, reaching a certain level of aggregate flow earlier is more
important than reaching the maximum fortified level of perfor-
mance at time T (e.g., nodes that include hospitals are required
to receive power as soon as possible). Based on Table 3, ascending
μt puts more emphasis on aggregate flow at the end of the response
horizon, while in Table 4, descending μt places emphasis on
increasing aggregate flow in earlier time periods. Note that it is
assumed that there exists a tradeoff for resource capability and
processing time: resources have shorter processing time with less
fortification capabilities (e.g., r ¼ 3 in Table 1), or they have
stronger fortification capabilities with more processing time
(e.g., r ¼ 1 in Table 1). From Tables 4 and 5, we conclude that
reaching to a certain level of performance (ascending and descend-
ing μt) in a short period of time might not be aligned with the im-
plementation of importance measures. Indeed, in the response
phase, the fortified portion of the capacity of less important links
may carry a greater amount of flow than the partially operational
critical links.

In Table 5, using importance measures may distribute the same
amount of aggregate flow among more demand nodes. This may
result in fewer demand nodes being satisfied. However, depending
on the temporal importance of fortification, a higher level of de-
mand could be met for vital activities (e.g., hospitals, evacuation
of casualties in particular areas). The similarity of Tables 4 and 6
suggests that the same level of demand over the response horizon is
met using either a constant μt or an ascending μt in conjunction
with a scaled wi. A comparison of Tables 5 and 7 suggests that
implementing a scaled value of wi performs better when no scale
is given to time periods with μt, though the comparison of Tables 5
and 7 suggests that if a descending μt is used, then demand is met
more effectively with a constant wi. We note from Tables 2–7 that
EijT , the number of links used to achieve aggregate flow, decreases
when importance measures are applied. This might be of impor-
tance in situations when it is preferred to use fewer links and con-
sequently shorter paths. For instance, in Table 6 using IMFcount

ij in
the model delivers the more aggregate flow with fewer links relative
to using no importance measure.

Resource Allocation Sensitivity Analysis

As adaptive-capacity-enhancing resources are limited, two scenar-
ios are developed to alter M̄r, the average number of resources
available, and Ūr, the average number of services that can be re-
leased from resources and assigned to disrupted components. The
two scenarios applied to the French power network are: (1) a vary-
ing number of services that each resource can send to disrupted

Table 7. Aggregate flow, number of active links, and demand nodes
receiving flow across link importance measures: μt descending and wi
scaled

Time IMFcount IFlow IFCR Constant

t ¼ 1 2,158 2,158 2,158 2,158
t ¼ 2 6,700 6,700 6,700 6,700
t ¼ 3 18,038 18,037 18,038 18,038
t ¼ 4 24,602 23,746 24,471 24,601
t ¼ 5 32,949 32,949 32,949 32,949
t ¼ 6 34,572 34,572 34,456 34,571
t ¼ 7 39,717 39,752 39,260 39,596
t ¼ 8 39,736 39,770 39,260 39,615
DiT (total active demand node) 133 130 130 131
EijT (total active links) 190 194 193 195
Fortified critical components 26 24 24 24
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links from the range Ūr ∈ ð0; djAj=SeÞ; and (2) a specific number
of available resources of each type M̄r ∈ ð0; SÞ.

Table 8 indicates the impact of number of resources on ag-
gregate flow and the number of demand nodes which receive
flow, respectively. Results indicate that when M̄r ≥ 5, the MILP
obtains the best solution, higher aggregate flow, as well as more
satisfied demand nodes, and increasing the average number of
resources to more than four will not impact on the total amount
aggregate flow reaching to the demand nodes. We do note that
the required number of resource depends on the topology of
the network, number of important links which are affected,
and the location of the disruptive event (e.g., the epicenter of the
earthquake).

Table 9 indicates the impact of resource capacity on the aggre-
gate flow, number of demand nodes receiving flow, and number of
involved links, respectively, for ascending μt and constant wi. The
results are analyzed under ascending μt and scaled wi and suggest
that increasing capacity of resources enables the model to maxi-
mize aggregate flow and serves more demand nodes. However,
for each of eight time periods in Table 9, there is a threshold in
average number of services each resource can release to dis-
rupted components (Ūr ¼ 10) above which no more improve-
ment is seen in the aggregate flow reaching to the demand
nodes. Table 10 shows the impact of resource capacity on the
aggregate flow, number of demand nodes receiving flow, and
number of involved links, respectively, for constant μt and
scaled wi. When demand nodes are prioritized (wi is scaled),
Ūr ¼ 9 is the optimal solution for the model as it represents
the maximum aggregate flow reaching to demand nodes, which
is less than the situation in which there is no priority weights for
demand nodes.

Concluding Remarks

This work is an initial attempt to explore the assignment of resour-
ces to a disrupted infrastructure network to enhance its adaptive
capacity, or the ability of the network to quickly adapt after a dis-
ruption by temporary means. The MILP formulation proposed here
uniquely accounts for three characteristics: (1) link criticality, to
emphasize those links that are considered important to the network;
(2) vulnerability, to emphasize those links that enable flow in the
network; and (3) connectivity, to emphasize those links that enable
demand to be met at demand nodes. The optimization formulation

Table 8. The impact of the average number of resources M̄r on aggregate
flow, number of active links, and demand nodes receiving flow: constant μt,
constant wi

Time

M̄r

1 2 3 4 5 6 7 8

t ¼ 1 0 0 0 0 0 0 0 0
t ¼ 2 3,491 5,811 10,157 14,288 14,336 14,061 14,336 13,511
t ¼ 3 7,846 15,557 21,929 23,635 23,699 24,051 23,660 24,442
t ¼ 4 11,684 24,513 29,125 32,803 32,998 33,060 32,906 33,641
t ¼ 5 14,562 31,251 38,194 40,390 40,463 40,196 40,828 40,543
t ¼ 6 14,562 33,639 42,079 43,108 42,927 43,908 44,206 44,627
t ¼ 7 16,903 39,363 45,815 44,776 43,923 44,776 45,347 45,698
t ¼ 8 16,903 39,479 45,931 44,776 45,931 45,931 45,347 45,698
Total DiT 128 137 137 139 139 139 139 140
Total EijT 198 215 210 204 197 202 200 205

Table 9. The impact of the average number of services released from resources Ūr on aggregate flow, number of active links, and demand nodes receiving
flow: ascending μt, constant wi

Time

Ūr

3 4 5 6 7 8 9 10 11 12 13

t ¼ 1 2,158 2,158 2,158 2,158 2,158 2,158 2,158 2,158 2,158 2,158 2,158
t ¼ 2 6,968 8,617 9,872 11,090 12,426 13,379 13,865 14,444 14,928 14,928 14,928
t ¼ 3 20,305 24,961 29,692 32,709 34,559 36,032 38,118 38,649 39,692 39,861 40,184
t ¼ 4 26,843 31,732 35,724 38,976 40,617 42,577 42,943 44,430 46,163 46,442 46,765
t ¼ 5 35,090 40,795 43,131 44,677 46,144 46,518 46,645 46,871 47,066 47,120 47,120
t ¼ 6 37,366 41,273 43,131 44,677 46,144 46,518 46,645 46,871 47,066 47,120 47,120
t ¼ 7 42,877 45,496 46,631 46,947 46,918 47,065 47,120 47,120 47,120 47,120 47,120
t ¼ 8 43,107 45,496 46,631 46,947 46,918 47,065 47,120 47,120 47,120 47,120 47,120
Total DiT 139 140 140 142 141 143 204 143 143 143 143
Total EijT 197 203 209 201 206 209 143 207 205 210 208

Table 10. The impact of the average number of services released from resources Ūr on the aggregate flow, number of active links, and demand nodes
receiving flow: constant μt, scaled wi

Time

Ūr

3 4 5 6 7 8 9 10 11 12 13

t ¼ 1 2,158 2,158 2,158 2,158 2,158 2,158 2,158 2,158 2,158 2,158 2,158
t ¼ 2 5,190 6,549 8,833 12,034 12,034 13,170 13,170 18,325 18,528 5,190 6,549
t ¼ 3 17,339 21,801 26,270 33,023 33,023 34,516 34,516 36,900 37,605 21,339 21,801
t ¼ 4 23,588 31,171 34,301 38,516 38,516 39,778 39,778 42,048 42,818 33,588 31,171
t ¼ 5 33,903 39,077 42,283 44,028 44,028 44,508 44,508 45,355 45,353 45,355 45,353
t ¼ 6 36,616 39,772 42,287 44,028 44,028 44,508 44,508 45,355 45,353 45,355 45,353
t ¼ 7 41,738 44,231 44,485 45,177 45,177 45,177 45,177 45,473 45,473 45,473 45,473
t ¼ 8 41,966 44,231 44,485 45,177 45,177 45,177 45,177 45,473 45,473 45,473 45,473
Total DiT 135 139 140 142 141 143 143 143 143 143 143
Total EijT 201 212 209 197 197 209 206 205 211 210 208
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was applied to a spatial disruption of the topology of the 400 kV
French network.

To measure link criticality, three flow-driven importance mea-
sures from Nicholson et al. (2016) were used and their effect on the
aggregate flow, number of demand nodes receiving flow, and num-
ber of involved links were measured. These measures emphasize
the effects of the links in the network to the maximum flow in each
time period from different perspectives, though any type of network
importance measure could be used. Note these importance mea-
sures may provide a limited perspective, as adaptive capacity is as-
sumed to not fully recover disruptions. However, from an integrated
approach, fortifying more important links in the short term may
result in more effective recovery in terms of length of recovery time
and the quality of recovery plan. All resources are assigned to clus-
ters immediately after the disruption. However, further work is
needed to explore how quickly after a disruption adaptive capacity
resources can be engaged to determine the value of postdisruption
importance information.

We examine the adaptive capacity efforts of the network when
there are priorities of decision makers of the power network. It is
observed that the optimal solution cannot be aligned with demand
node priority as the network cannot be completely recovered during
the short term and the component which is fortified by resources to
lead flow through more important demand nodes may differ from
the component which provide maximum aggregate flow in each
time period. Ascending time weight, μt, aligns with maximum ag-
gregate flow optimal solution. Furthermore, it provides the optimal
solution that maximizes network performance at the end of the
adaptive capacity time horizon, T, which may consequently lead
to more effective recovery. Regarding component criticality, the
computational results suggest that the implementation of IMFcount
under any strategy (i.e., constant or scaled μt and wi) enhance
the adaptive capacity. In situations when demand nodes are priori-
tized, the use of the importance measures assists in choosing the
paths that satisfy the corresponding demand nodes while consider-
ing the performance of the whole network.

A direction for future work is the integration of the vulnerability
reduction formulation proposed here with a restoration formulation,
effectively studying the tradeoff between resource assignment for
adaptive capacity versus restorative capacity for more comprehensive
network resilience planning under dynamic disruption scenarios.

Notation

The following symbols are used in this paper:
A = set of links in network G ¼ ðN;AÞ;

A 0 ⊆ A = set of disrupted links in network G ¼ ðN;AÞ;
bi = amount of demand in each node i ∈ N− in each

time period;
Iπij = importance measure calculated for ði; jÞ ∈ A of

type π;
N = set of nodes in network G ¼ ðN;AÞ;

N− ⊆ N = set of demand nodes in network G ¼ ðN;AÞ;
Nþ ⊆ N = set of supply nodes in network G ¼ ðN;AÞ;
N¼ ⊆ N = set of transition nodes in network G ¼ ðN;AÞ;

Mr = number of available resources of type
r ¼ 1; : : : ;R;

oi = amount of supply in each node i ∈ Nþ in each
time period;

pr = fortification time of each service sent from
resource r ¼ 1; : : : ;R to each disrupted link;

r ¼ 1; : : : ;R = set of resources;

s ¼ 1; : : : ; S = set of clusters;
Ur = number of services each resource r ¼ 1; : : : ;R

can send to disrupted components after its
allocation to a particular cluster;

uijte = capacity of each link ði; jÞ ∈ A before the
disruption;

uijtd = capacity of each link ði; jÞ ∈ A 0 after the
disruption (assuming no fortification);

Vijt = measure of accessibility (fortified capacity)
associated with disrupted link ði; jÞ;

wi = importance weight assigned to demand node i;
xijt = continuous variable representing the flow on link

ði; jÞ ∈ A at time t;
yrsijt = binary variable equal to 1 if a service of resource

r assigned to cluster s finishes the fortification
process of link ði; jÞ ∈ A 0 at time t ¼ 1; : : : ; T;

zrs = binary variable equal to 1 if resource r is assigned
to cluster s;

θsij = binary parameter equal to 1 if link ði; jÞ ∈ A 0
belongs to cluster s ¼ 1; : : : ; S and 0 otherwise;

μt = weight associated with the performance of the
network in each time t;

φit = continuous variable representing the amount of
flow reaching to demand node i ∈ N− at each
time t; and

φite = aggregate flows reaching node i ∈ N− before the
disruption.
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