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Abstract: This study proposes a framework for the probabilistic prediction of building portfolio functionality loss (BPFL) in a community
following an earthquake hazard. Building functionality is jointly affected by both the structural integrity of the building itself and the avail-
ability of critical utilities. To this end, the framework incorporates three analyses for a given earthquake scenario: (1) evaluation of the spatial
distribution of physical damages to both buildings and utility infrastructure; (2) computation of utility disruptions deriving from the cascading
failures occurring in interdependent utility networks; and (3) by integrating the results from the first two analyses, making a probabilistic
prediction of the postevent functionality loss of building portfolios at the community scale. The framework couples the functionality analyses
of physical systems of distinct topologies and hazard response characteristics in a consistent spatial scale, providing a rich array of infor-
mation for community hazard mitigation and resilience planning. An implementation of the BPFL framework is illustrated using the res-
idential building portfolio in Shelby County, Tennessee, subjected to an earthquake hazard. DOI: 10.1061/(ASCE)ST.1943-541X.0001984.
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Introduction

Communities are highly dependent on the functionality of their
physical infrastructure to deliver essential services, provide shelter,
and support socioeconomic interests. Essential to the built environ-
ment are the wide array of buildings in the community (building
portfolio) and the critical utility systems (e.g., electric power and
water). Research with respect to enhancing community resilience to
hazards is an active and ongoing area of investigation (Bruneau
et al. 2003; Chang and Shinozuka 2004; Dueñas-Osorio et al. 2007;
Bocchini and Frangopol 2012; Lounis and McAllister 2016).
Pioneering community leaders in San Francisco (Poland 2013),
Oregon (OSSPAC 2013), and other areas have outlined plans
and goals to improve community resilience to natural hazards.
Among these efforts, there is an increasing demand for a quanti-
tative approach to predict the building portfolio functionality loss
(BPFL) at a community scale. Substantial BPFL following a hazard
undermines fundamental community functions such as housing,
education, commerce, and government. This, in turn, may lead to

significant economic and social consequences, including popula-
tion dislocation, business closures, and increased unemployment.
A realistic and quantitative estimate of the probabilistic spatial dis-
tribution of BPFL for a community can provide vital information
for decision support to community leaders regarding both disaster
mitigation and recovery planning (e.g., estimate the number and
locations of temporary shelter needs, allocate health care resources
for efficient postdisaster rescue, planning for emergency drinking-
water supply, etc.).

Building portfolios are one of the most complex physical sys-
tems in a community because they, on one hand, serve as the re-
ceiving end of all utility networks and, on the other hand, directly
interface with the population (Lin and Wang 2017a, b). Function-
ality of an individual building can be defined as its availability to
be used for its intended purpose, which is a function of its struc-
tural integrity and availability of utilities (Almufti and Willford
2013). A main cause of building functionality loss is hazard-
induced structural or nonstructural damages because a building
relies on its load-resistant system to provide safety and on its non-
structural components (e.g., lighting, heating, elevators, etc.) to
provide serviceability. Another primary cause of building function-
ality loss is the disruption of basic utilities, i.e., an undamaged
building is not functional if certain utilities (such as water and
power) are unavailable. To the best of the authors’ knowledge,
building functionality loss prediction at a community scale based
on a fully coupled building profile and utility networks has not been
studied in the literature.

Buildings can be considered as the demand nodes of utility net-
works. To explicitly consider the availability of critical utilities
to meet the demand of a building portfolio, a network model that
can capture the interdependent nature among utilities is required.
Among existing classifications of different types of interdepend-
ency between infrastructure networks (cf. Ouyang 2014), the four
classes categorized by Rinaldi et al. (2001) are well accepted:
(1) physical (i.e., functionality of one infrastructure network
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depends on the physical input of another); (2) cyber (i.e., the state
of one infrastructure network depends on the information flow of
another); (3) geographic (i.e., two components are colocated); and
(4) logical (i.e., types of dependency that are not physical, cyber, or
geographic). A variety of approaches have been proposed to model
such interdependencies, including (1) empirical-based analyses;
(2) agent-based models; (3) input-output models; and (4) network
flow approaches. Empirical-based analyses make use of historical
data of given disasters to identify failure patterns (Mendonça and
Wallace 2006; Luiijf et al. 2008; Utne et al. 2011). The data used
in such model development are often both location-specific and
hazard-specific and cannot be generalized. Agent-based ap-
proaches model interdependent networks as complex adaptive
systems in which the network components are agents that in-
teract within a virtual environment based on predefined rules
(Dudenhoeffer et al. 2006). Agent-based models require many as-
sumptions to define the agent-specific rules, which can be difficult
to calibrate and validate because of a lack of data. The Leontief
input-output model has been widely studied and successfully ap-
plied to interdependent lifelines to measure economic relationships
among infrastructure sectors (Haimes and Jiang 2001; Santos and
Haimes 2004; Haimes et al. 2005a, b; Xu et al. 2011). However, it
is not suitable for analyzing dependencies at high levels of granu-
larity such as the infrastructure component–level. Network flow–
based interdependency models provide a direct representation of
lifeline infrastructure systems (e.g., electric power network, water
distribution networks, gasline distribution networks) and their
interdependences using graphs composed of nodes and arcs (Lee
et al. 2007; Ouyang and Dueñas-Osorio 2011; Trucco et al. 2012;
González et al. 2016). Network flow models readily handle many
layers of networks, multiple commodities, and a wide variety of
interdependency relationships. Furthermore, such models naturally
support the component-level resolution necessary for coupling
individual buildings as demand nodes with specific elements of the
utility networks and are applicable to various communities of
different sizes and topologies.

This study proposes a BPFL estimation framework that integra-
tes three analysis steps, as shown in Fig. 1. Damage estimation is
used to evaluate the spatial distribution of physical damages to both
buildings and utility networks for a given earthquake scenario. The
uncertainties in the spatially varying hazard demands and structural
capacities, as well as the spatial correlations among these variables,
are modeled and propagated throughout the analysis. Cascading
failure analysis is used to compute the functionally-interdependent
utility disruptions from cascading failures by using a state-of-the-
art network flow–based model of the interdependent utility net-
works. Lastly, building functionality loss estimation is used to
integrate the physical damage to buildings with utility disruptions
to quantify the aggregated BPFL at a community scale as well as
the spatial variation in the functionality loss across the geographic

domain of the community. The framework couples the functionality
analyses of physical systems of distinct topologies and hazard re-
sponse characteristics in a consistent spatial scale, providing a rich
array of quantitative information for hazard mitigation and resil-
ience planning. The researchers emphasize that the current work
only focuses on BPFL immediately following an earthquake event,
which is the necessary starting point for the critical next step of
modeling the temporal evolution of building portfolio functionality
recovery. In the remainder of this study, the authors first discuss
the overall framework and mathematical formulation, then illustrate
the proposed methodology using Shelby County, Tennessee as a
testbed and finally provide concluding remarks.

Framework to Assess Functionality Loss of
Community Building Portfolios

Definition of Building Functionality

This study adopts the definition of building functionality proposed
by Almufti and Willford (2013), in which building functionality is
defined as the building’s capacity to be used for its intended pur-
pose, depending on (1) its structural integrity to provide shelter, and
(2) utility availabilities at the building site. In an earthquake hazard,
based on the degree of structural, nonstructural or other type of
damage to a building following an earthquake, its functionality is
generally categorized into three levels: restricted entry (red plac-
ard), restricted use (yellow placard), and reoccupancy (green plac-
ard) (Oaks 1990). Only buildings tagged with green placards are
safe to occupy. In addition to the safety requirement, utilities
(water, power, gas, etc.) need to be available for a building to be
functional. Accordingly, five different states of building function-
ality are defined in Table 1, ranging from restricted entry to full
functionality. Each functionality state corresponds to a unique
combination of a building’s physical damage condition and its util-
ity availability. Detailed discussions on the classification of build-
ing functionality states can be found in literature (Almufti and
Willford 2013; Lin and Wang 2017a, b). For simplicity, building
functionality in this study is generalized into two broad categories:
functional (States 4 and 5) and nonfunctional (States 1–3). Accord-
ingly, there are three major steps to estimate BPFL as illustrated in
Fig. 1, which are discussed in detail in the subsequent sections,
respectively.

Damage Assessment of Buildings and Utility Networks

An earthquake scenario, SEQ, is often characterized by a specific
magnitude Mw and an epicenter distance D from a site of interest.
The appropriate scenario event for resilience assessment of a
community should be identified based on the hazard frequency
analysis and the risk tolerance of the specific community under

Fig. 1. Flowchart for building portfolio functionality loss estimation
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investigation (NIST 2015). With a selected scenario earthquake, the
seismic intensity at the specific site of a structure can be obtained
subsequently from ground-motion attenuation functions (Atkinson
and Boore 1995; Campbell 2003; Atkinson and Boore 2006).
Generally, the ground-shaking intensities (IM) are represented by
a median acceleration (or velocity) response and period-dependent
dispersions

lnðIMiÞ ¼ lnðIMiÞ þ τ · ξi ð1Þ
where IMi = expected value of ground-motion intensity at structure
site i computed from a selected ground-motion attenuation model;
ξi = error term often described by a standard normal distribution;
and τ = standard deviation of lnðIMiÞ.

The joint probability of ground-motion intensity at all structure
sites is a multivariate lognormal distribution. For any two structures
within the same community, their seismic intensities are positively
correlated because the common hazard with large footprint, which
is often simulated as a random field characterized by an exponen-
tially decayed spatial correlation with respect to the separation dis-
tance between the two sites (Goda and Hong 2008; Jayaram and
Baker 2009). For this study, the correlation function determined
by Wang and Takada (2005) is adopted

ρIMi;j ¼ exp

�
− rij

R

�
ð2Þ

where rij = separation distance between structures i and j; and R =
correlation distance, typically ranging from 20 to 40 km depending
on the hazard characteristics and local site conditions (Wang and
Takada 2005).

For buildings and engineered utility facilities in the community,
damage states are often estimated using fragility functions, which
express the probability that the response of a structural system
equals or exceeds a stipulated damage state as a function of hazard
intensity. Lognormal probability distributions are commonly as-
sumed (FEMA/NIBS 2003)

P½dsjIM� ¼ Φ½lnðIM=IMdsÞ=βds� ð3Þ
where IMds = median value of seismic intensity IM at which the
structure reaches the damage state (ds); and βds = logarithmic stan-
dard deviation of the seismic intensity with respect to ds.

Different intensity measures are often used for different type
of structures; spectral displacement (Sd) or spectral acceleration
(Sa) are often used as the seismic-intensity measure for buildings,
whereas peak ground acceleration (PGA) or peak ground velocity
(PGV) are most often used for lifeline components and systems.
The ds are described as slight, moderate, extensive, and complete,
each being associated with a set of predefined quantitative perfor-
mance thresholds (in terms of relevant structural response param-
eters, e.g., interstory draft ratio) (FEMA/NIBS 2003; Steelman
et al. 2007). Eq. (3) computes the discrete probabilities of these

damage states for buildings and individually engineered utility fa-
cilities including gate stations and substations in power networks
and water tanks and pumping stations in water networks.

For distributed line segments, such as buried water or gas pipe-
lines, the number of breaks (N) in a pipeline segment of length L
conditional on given seismic intensity (PGV) can be modeled by a
Poisson distribution (Adachi and Ellingwood 2008)

P½N ¼ n� ¼ e−γL ðγLÞ
n

n!
ð4Þ

Accordingly, the failure probability of the pipe segment is

Pf;pipe ¼ 1 − P½N ¼ 0� ¼ 1 − e−γL ð5Þ
where γ = pipe-break rate, which is generally assumed to be 20%
of pipe-break density, RR, which in turn can be estimated by the
following empirical formula (Dueñas-Osorio et al. 2007):

RR ¼ 0.0001 × PGV2.25 ð6Þ
where RR is expressed in terms of the number of breaks per-unit
kilometer, and the unit of seismic intensity PGV is centimeters per
second.

Cascading Failures of Interdependent Utility Networks

To model the complete utility disruption at building sites resulting
from failures in utility networks, this study introduces the following
network flow model. The cascading failures in interdependent net-
works model (CFIN) takes as inputs the list of all components that
have been directly damaged because of the hazard and are no lon-
ger functional (e.g., a list of nonfunctional substations, etc.) and
computes the indirect cascading effects as the utility disruption log-
ically propagates throughout the community. For instance, if an
electric power network (EPN) component is destroyed (an input
to the model), then the resulting power outage may render a nearby
water pumping station inoperable (an output of the model). This
water disruption may impact residential buildings further away that
still have power (an output of the model). The CFIN model intro-
duced herein is based on the interdependent network design pro-
posed by Lee et al. (2007) and improved by González et al. (2016),
but has been revised in the present study with a focus on quan-
tifying the cascading failures among interdependent networks
conditioned on the physical damages to the network components
discussed previously. The CFIN model differs from those of Lee
et al. (2007) and González et al. (2016) in that it does not integrate
restoration decision optimization. This simplification improves the
efficiency of the approach for the BPFL framework.

The CFIN model can be described mathematically as follows.
Let K denote the set of all utility infrastructures (water, EPN, gas,
etc.) in the community. Each utility infrastructure k ∈ K is then de-
scribed as a network consisting of nodes Vk (e.g., water pumps) and

Table 1. Building Functionality States under Earthquake Hazard

Identifier Functional states Building damage description
Utilities

accessibility
Functionality
category

1 Restricted entry Extensive structural and nonstructural damage; unsafe to occupy or enter N/A Nonfunctional
2 Restricted use Moderate to extensive structural and nonstructural damage; portion of the

building is unsafe to occupy
N/A

3 Reoccupancy Minor to moderate structural and nonstructural damage; safe enough to be
used for shelter

N/A

4 Baseline functionality Minor cosmetic structural and nonstructural damage Partially available Functional
5 Full functionality Minor damage to none Fully available

© ASCE 04018015-3 J. Struct. Eng.
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arcs Ak (e.g., water pipelines) for each infrastructure type. Let Lk

denote the set of commodities in infrastructure k ∈ K. A commod-
ity in the CFIN, for example, could be electric power in the EPN or
water in the potable-water network (PWN). The sets of nodes mod-
eled as supply, demand, and transshipment nodes are denoted as
Vkþ
l , Vk−

l , and Vk¼
l , respectively. The set Vkþ

l includes the network
components that provide commodities to the community, such as
the gate stations in the EPN and water tanks in the PWN. The de-
mand nodes Vk−

l represent the population needs within the commu-
nity and may include, for example, substations in the EPN or water
distribution points in the PWN. The set Vk¼

l are nodes used to re-
present junction points in the network. Let rlki denote the amount of
the requirements of node i ∈ Vk for commodity l ∈ Lk in network
k ∈ K. If rlki > 0, the node is a supply node and the value represents
the amount of the associated commodity which is readily available.
If rlki < 0, then node i is a demand node and the value represents the
community need at that node (e.g., power needs at a substation or
water at a distribution node). If rlki ¼ 0, then node i is a transship-
ment node.

The cost of transmitting commodity l ∈ Lk on arc ði; jÞ ∈ Ak is
defined as clkij . For the EPN, this is the power transmission cost

through the network. Let mlkþ
i and mlk−

i denote the unit cost of
surplus and deficit supply of commodity l ∈ Lk at node i ∈ Vk.
That is, a per-unit cost is assumed if a commodity is unable to be
routed through the network to meet demand. Each node and arc
have capacities that are denoted by uki and ukij, respectively. Let

wk
i denote the failure cost of node i ∈ Vk in infrastructure k ∈ K.
Of the four types of interdependency, this study specifically

models functional interdependency because it is most relevant to

the investigated problem. LetCḱ
ik denote the set of nodes in network

ḱ ≠ k that node i ∈ Vk depends upon. For example, if infrastruc-
ture k and ḱ correspond to the PWN and EPN, respectively, and

node i is a particular water pump, then Cḱ
ik contains all of the com-

ponents in the EPN that provide power to that pump. Cḱ
ik can be

referred to as the set of parent nodes in Vḱ for child node i ∈ Vk.
The parent-child relationships handled by the model can be limited
to one-way dependencies (e.g., components in the PWN depend on
components in the EPN) as well as true interdependencies (e.g., ad-
ditionally, components in the EPN depend on components in
the PWN).

Let the parameter 0 < λjḱik ≤ 1 be used to reflect the dependency
relationship between child node i ∈ Vk in network k ∈ K and pa-

rent node j ∈ Cḱ
ik. This value represents the contribution of the pa-

rent node to the functionality of the child node. For example, if
child node i is functional when at least one parent node j is func-

tional, then λjḱik is set to a value of 1 for all j ∈ Cḱ
ik. That is, each

parent node is alone sufficient for the functionality of node i. As
such, this parameter allows for modeling redundancy across the
utility networks (e.g., a water pump might depend on the function-
ality of a generator or a backup generator). On the other hand, if the
functionality of node i requires all parent nodes to be functional,

then λjḱ
ik is set to 1=jCḱj

ik for each j ∈ Cḱ
ik. Consequently, many types

of dependency can be represented mathematically by adjusting the

value of λjḱ
ik . This parameter is used in Eq. (15) in the mathematical

description of the CFIN model.
Let dki and dkij denote the binary functionality states of node i ∈

Vk and arc ði; jÞ ∈ Ak, respectively. These parameters are set to 1 if
the corresponding node or arc are rendered nonfunctional by a

hazard; otherwise, they are set to 0. These parameter inputs are
computed from Step 1 in Fig. 1 as described in the previous section.

There are three types of decision variables in the model: flow
variables, slack variables, and failure status variables. Let xlkij de-
note the flow variable for commodity l ∈ Lk through arc ði; jÞ ∈
Ak in network k ∈ K. Let slkþi and slk−i denote slack variables to
indicate the surplus and deficit of commodity l ∈ Lk at node i, re-
spectively. Let the binary variable fki take on a value of 1 if node
i ∈ Vk in network k ∈ K has failed; otherwise, 0. This failure can
occur as a result of three causes: (1) direct damage from the hazard;
(2) insufficient supply of a required commodity (e.g., electrical
power, water, etc.); or (3) failures within the set of parent nodes
on which it depends. The CFIN model is proposed in Eqs. (7)–(18)

MinimizeX
k∈k

X
l∈Lk

X
ði;jÞ∈Ak

clkijx
lk
ij þ

X
k∈k

X
l∈Lk

X
i∈Vk−;Vkþ

ðmlk−
i slk−i þmlkþ

i slkþi Þ

þ
X
k∈k

X
i∈Vk

wk
i f

k
i ð7Þ

such thatX
ði;jÞ∈Ak

xlkij −
X

ðj;iÞ∈Ak

xlkji ¼ rlki − slkþi þ slk−i ; ∀ i ∈ Vkþ ∩ Vk−;

∀ l ∈ Lk; ∀ k ∈ K ð8Þ
X

ði;jÞ∈Ak

xlkij −
X

ðj;iÞ∈Ak

xlkji ¼ 0; ∀ i ∈ Vk¼; ∀ l ∈ Lk; ∀ k ∈ K

ð9Þ

fki ≥ dki ; ∀ i ∈ Vk; ∀ k ∈ K ð10Þ

Mfki ≥
X
l∈Lk

slk−i ; ∀ i ∈ Vk− ∪ Vkþ; ∀ k ∈ K ð11Þ

X
l∈Lk

xlkij ≤ ukijð1 − dkijÞ; ∀ ði; jÞ ∈ Ak; ∀ k ∈ K ð12Þ

X
ðj;iÞ∈Ak

X
l∈Lk

xlkji ≤ uki ð1 − dki Þ; ∀ i ∈ Vk; ∀ k ∈ K ð13Þ

X
ði;jÞ∈Ak

X
l∈Lk

xlkij ≤ uki ð1 − fki Þ; ∀ i ∈ Vk; ∀ k ∈ K ð14Þ

1− fki ≤
X
j∈Cḱ

ik

λjḱik
�
1− fḱj

�
; ∀ i ∈ �

n ∈ VkjCḱ
nk ≠ ∅�; ∀ k ∈ K

ð15Þ

xlkij ≥ 0; ∀ ði; jÞ ∈ Ak; ∀ l ∈ Lk; ∀ k ∈ K ð16Þ

slkþi ; slk−i ≥ 0; ∀ i ∈ Vk; ∀ l ∈ Lk; ∀ k ∈ K ð17Þ

fki ∈ f0; 1g; ∀ i ∈ Vk; ∀ k ∈ K ð18Þ

The objective function in Eq. (7) consists of minimizing the sum
of three components: variable flow cost on each arc, cost of exces-
sive or insufficient supply, and node failure cost. Under normal op-
eration (no physical damage), the objective function should reflect
the actual operating costs of flow (e.g., power transmission costs).
This is achieved by setting the penalties associated with the slack
variables (mlkþ

i and mlk−
i ) and the failure costs (wk

i ) for node i to
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values substantially higher than the variable cost associated with
flow (clkij ) on arc ði; jÞ of commodity l in network k. Without physi-
cal damage in the community, the optimization model would route
the commodities through the networks to meet all demands at mini-
mum operating cost. In the case of a hazard, however, it may be
impossible to meet the community demand. As such, the commod-
ities will still be routed to minimize cost, but now that the potential
failure costs and slack penalties likely outweigh the operational
costs, the optimal solution will be one that focuses on minimizing
those effects. The penalty values and failure costs can be assigned
to prioritize the importance of certain utility services and/or service
areas in the community if such information is available. For the
present study, the penalties are all set to a constant value, as are
the node failure costs.

The constraints in Eq. (8) ensure the flow balance on each
supply/demand node. Because of their high cost, the slack variables
take on nonzero positive values only when the system is damaged
and unbalanced (e.g., insufficient power supply to meet all power
demands). For transshipment nodes, the constraints in Eq. (9) en-
sure that the total inflow is equal to the total outflow of the same
commodity. Constraints in Eq. (10) update the failure status of each
node based on the initial damage states estimated in the previous
step. If a node is nonfunctional because of damage (dki ¼ 1), the
corresponding failure status is forced to 1 (fki ¼ 1).

In this study, a supply/demand node is defined as nonfunc-
tional if the corresponding demand is not fully supplied. This
is realized by constraints in Eq. (11): if there is a shortage of
a required commodity l for node i (i.e., when slk−i > 0), then
the failure variable is also forced to be 1. The parameter M in
Eq. (11) is used to enforce the logical relationship between the
node failure status decision variable and the related commodity
slack decision variables at the same node. The value for M should
be set to a sufficiently large value so as to not artificially inhibit
feasibility of optimal solutions. Constraints in Eq. (12) ensure that
the total flow of all commodities on each arc cannot exceed the
corresponding capacity (which is 0 if the arc is nonfunctional be-
cause of direct damage). Constraints in Eq. (13) guarantee that the
total flow into a node is less or equal to its capacity and is 0 if it is
nonfunctional because of direct hazard damage. Constraints in
Eq. (14) ensure that if a node is failed (regardless of the reason),
total outflow from this node is 0. Constraints in Eq. (15) propagate
the failure statuses from parent nodes to child nodes. Constraint
Eqs. (16) and (17) define the flow variables and slack variables as
continuous and nonnegative. Finally, variables indicating failure
statuses are defined as binary in Eq. (18).

The CFIN model is a mixed binary linear programming problem
and can be solved using commercial software. However, the binary
decision variables are limited to the identification of failed nodes.
Additionally, unlike similar network models (Lee et al. 2007;
González et al. 2016) the present study does not incorporate resto-
ration decisions. These two characteristics together result in CFIN
fast computation times for moderate-sized problems (e.g., Shelby
County, Tennessee). This is an important feature for practical im-
plementations of the BPFL framework in that many hazard realiza-
tions should be simulated (and their distinct cascading effects
computed) to provide a sensible probabilistic measure.

The output of the CFIN model provides the list of infrastructure
nodes that have failed and, for each commodity and demand node
in the community (i.e., building), the percentage of demand that can
be met in the present damaged state. This information, together
with the physical damage estimation of the building portfolio, will
be used to determine the total functionality loss of community
building portfolios next.

Mapping Building Damage and Utility Disruption to
Obtain Building Functionality Loss

If this study considers water (W) and power (P) as the necessary
utilities to maintain the functionality of a building, the dependence
of functionality state (FSb) of any building (b) on both utility avail-
ability and the robustness of the building itself, can be generalized

Fb ¼ Sb ∩ FW ∩ FP

Fb ¼ Sb ∪ Fw ∪ FP; ∀ b ∈ B ð19Þ

where Fb = event that building bmaintains functionality (i.e., base-
line and full functionality states in Table 1), where building b be-
longs to community building portfolio B; and Sb = event that the
building b remains safe to occupy following the hazard event,
which is closely related to building damage state discussed previ-
ously. In the subsequent analysis, this study assumes a damage state
considered extensive or complete will render a building unsafe to
occupy (UO) (i.e., Sb). A more detailed mapping scheme from the
four damage states (for both structural and nonstructural compo-
nents) to the five-functionality states (Table 1) can be found else-
where (e.g., Lin and Wang 2017b). FW and FP = events that the
baseline water and power supply is available at the building site,
respectively, where these events are derived from the CFIN results;
and F̄b, Sb, Fw, and FP = complement of events of Fb, Sb, FW , and
FP, respectively.

At the community scale, the authors further define the function-
ality loss ratio (FLR) of a building portfolio as the percentage of
buildings in the portfolio that are nonfunctional following a hazard

FLR ¼ 1

jBj
X
b∈B

Ib ð20Þ

where jBj = total number of buildings in building portfolio B; and
Ib = functionality indicator of any building b

Ib ¼
�
0 FSb ¼ Fb

1 FSb ¼ Fb

; ∀ b ∈ B ð21Þ

The probability distribution of FLR can be computed through
the law of total probability theorem (Lin and Wang 2016)

PðFLR ≤ zjSEQÞ ¼
Z Z

FLRðDSÞ<z
fDSjIMðujvÞfIMjSEQðvjSEQÞdudv

ð22Þ

where fIMjSEQðvjSEQÞ = joint probability density function of
ground-motion intensity IM at all building sites [Eqs. (1) and
(2)] conditioned on the scenario event SEQ; fDSjIMðujvÞ = joint
PDF of damage state DS conditional on IM for all buildings in
the portfolio, which can be obtained from fragility functions for
different building types in the portfolio; and the FLR for a given
damage field, FLRðDSÞ, is obtained using Eqs. (19)–(21). Both
IM and DS are vectors, and the dimension of these vectors is con-
sistent with the number of buildings in the considered portfolio.
Eq. (22) considers uncertainties and spatial correlations in both
hazard demands and structural damages of all buildings in the port-
folio and can be approximated using the multilayer Monte Carlo
simulation shown in Fig. 2. Eq. (22) estimates the probabilistic dis-
tribution of FLR for a scenario event, which implies that the un-
certainties in the earthquake occurrence and fault location are not
considered.
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Case Study: Functionality Loss Estimation of the
Residential Building Portfolio in Shelby County,
Tennessee

Building Portfolio and Utility Networks in
Shelby County, Tennessee

The authors now implement the proposed BPFL estimation frame-
work by applying it to the residential building portfolio (RBP) in

Shelby County, Tennessee for a likely scenario earthquake. The
RBP accounts for approximately 90% of the Shelby building inven-
tory and is distributed spatially across 221 census tracts. Similar to
most small and midsized communities in the United States, the
RBP in Shelby consists mainly of wood frames. Table 2 summa-
rizes the Shelby RBP by structural types and seismic design code
levels, which are consistent with those defined in HAZUS (multi-
hazard loss estimation methodology Hazus-MH) (FEMA/NIBS
2003). In particular, the W1 Type wood buildings designed in line

Fig. 2. Multilayer MCS for probabilistic estimation of building portfolio functionality loss for a scenario earthquake
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with the low seismic code (FEMA/NIBS 2003) account for 93% of
the RBP in Shelby. Fragility functions of these building types are
adopted from HAZUS for the damage evaluation. Fig. 3 shows the
221 census tracts and associated RBP spatial distribution.

The investigation considers water and power as the critical util-
ities necessary to maintain the functionality of residential buildings,
both of which are managed by the Memphis Light, Gas, and Water
(MLGW) Division. Fig. 4 shows the skeletonized topology of the
power and water utility systems with major network components.
The EPN contains 59 nodes: 8 gate stations, 16 23-kv substations,
21 12-kv substations, and 14 intersections. There are 114 directed
arcs representing the power transmission and distribution lines.
There is no power plant in Shelby County, and the eight gate sta-
tions are considered as supply nodes in the EPN. The EPN inter-
sections are transshipment nodes. The substations are the demand

nodes, each of which has a specified electric power service area
(EPSA) as indicated in Fig. 4(a). The PWN consists of 49 nodes,
including 6 elevated storage tanks, 9 large pumps, and 34 distribu-
tion nodes, as well as 98 directed arcs representing water pipeline.
The tanks and large pumps are supply nodes and all distribution
nodes are demand nodes, each of which has a corresponding
potable-water service area (PWSA). In Fig. 4, the number on each
node is the node ID, and each arc is identified by the From and To
nodes. For instance, the arc (6, 24) in EPN corresponds to the
directed arc leaving from the gate station (Node 6) and arriving at
the 23-kv substation (Node 24).

Each building in the RBP belongs to a specific EPSA and
PWSA based on its geographic location and is supplied with power
and water from the respective demand nodes in the corresponding
EPSA and PWSA. The total supply capacity and demand of the
EPN are 1,434 and 1,003, respectively, representing a 43% reserved
capacity. The total supply capacity and demand of the PWN are
1,133 and 997, respectively, representing a 14% surplus (Steelman
et al. 2007). Under normal circumstances (e.g., no hazard), both
EPN and PWN have more than sufficient supply to meet all the
associated demands. These reserved supply capacities provide plau-
sible redundancies to facilitate community emergency response. In
this analysis, the authors assume 40% of the full supply of water and
power under normal operation conditions represents the utility re-
quirement to maintain the baseline building functionality following
a disastrous event.

Fragility functions used to estimate the damage of network com-
ponents (nodes) in both EPN and PWN are reported in Table 3
(FEMA/NIBS 2003), indicating the EPN components on average
are more vulnerable than those in PWN, and the weakest elements
in the interdependent EPN-PWN networks are likely to be the gate
stations. The failure probability for the PWN pipelines is given in
Eqs. (4)–(6). The vulnerability of the EPN transmission lines to
earthquake is negligible (Shinozuka et al. 2007) and therefore is
not considered for this illustration.

This study assumes that the operation of the pumping stations in
PWN fully depends on the input of power from the designated 12-
or 23-kv EPN substation in the EPSA in which the pumping station
is located. These dependencies are listed in Table 4, showing that
each pumping station (third column) depends on the designated
substation (first column) in the same row for power input. The
CFIN model is assumed that the operating costs, associated with
the first term in Eq. (7), are derived from the lengths of the power
transmission lines and water pipes. As mentioned previously, the
node failure costs and slack penalties are set to values larger than
the operating costs. Without having information on node or
utility service priorities, this research has set all node failure costs
equally and each slack penalty equally. The detailed EPN and
PWN data sets can be found in the Mid-America Earthquake Center
Seismic Loss Assessment System (MAEViz) database (Steelman
et al. 2007) and the Analytics Lab at the OU (IN-CORE 2017).
Only one-way dependency is investigated in this case study,
i.e., pumping stations depend on the substations for power input;
however, the proposed CFIN model can be applied to two-way
dependencies in multilayer interdependent networks, as discussed
previously.

Analysis and Results

Significant earthquakes in Shelby likely initiate from the New
Madrid seismic zone (NMSZ), which consists of three fault seg-
ments (New Madrid North, Reelfoot, and Cottonwood Grove). The
scenario earthquake with Mw ¼ 7.7 and an epicenter located at
35.3 N; 90.3 Wused in this study is one of the most likely scenarios

Table 2. Residential Building Portfolio by Structural Type and Seismic
Design Code (Data from Steelman et al. 2007)

Structural typea Precode
Low
code

Moderate
code

High
code Total

C1L 6 21 2 0 29
C1M 4 1 1 0 6
C2H 4 17 8 0 29
C2L 1 1 0 0 2
C2M 0 1 2 0 3
MH 4 32 6 1 43
PC1 0 13 0 1 14
RM1L 0 0 1 0 1
S1H 7 12 6 1 26
S1L 3 286 80 54 423
S1M 0 11 38 25 74
S3 1 4 6 23 34
URML 4,042 3,338 0 0 7,380
URMM 5 0 0 0 5
W1 0 267,958 0 0 267,958
W2 185 4,719 7,166 0 12,070
Total 4,262 276,414 7,316 105 288,097
aDescription of the structural type: C1 = concrete moment frame; C2 =
concrete shear walls; MH = mobile homes; PC1 = precast concrete tilt-
up walls; RM1 = reinforced masonry bearing walls with wood or metal
deck diaphragms; S1 = steel moment frame; S3 = steel light frame;
URM = unreinforced masonry bearing walls; W1 = wood, light frame;
W2 = wood, greater than 464.5m2 (5,000 ft2). The character following
the abbreviation describing structural type, if present, represents
building height class: L = low, M = medium, or H = high.

Fig. 3. Distribution of the residential buildings in census tracts of
Shelby County (data from Steelman et al. 2007)
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with a 500-year return period based on the disaggregation analysis
by United States Geological Survey (2017). Detailed information
on soil condition at building sites was unavailable, and the soil was
assumed to be Category D over the entire region (Building Seismic
Safety Council 2003). The ground-motion attenuation model sug-
gested by Atkinson and Boore (1995) was used for obtaining the
spatial seismic-intensity map, which provides both the median seis-
mic intensity (spectral acceleration, PGA, and PGV) shown in
Fig. 5 and the variance in the ground motions. The spatial

(a)

(b)

Fig. 4. Skeletonized power and water network topologies in Shelby County, Tennessee: (a) electric power network in Shelby; (b) potable-water
network in Shelby

Table 3. Parameters of Functionality Fragility Functions of Engineered
Utility Facilities

Components Median (g) β

Gate station 0.47 0.4
23-kv substation 0.7 0.4
12-kv substation 0.9 0.45
Elevated water tank 1.5 0.6
Pumping station 1.5 0.8

Table 4. Functional Dependencies between EPN and PWN

Network Node Type

Node in power network (parent node) 10 23-kv substations
16 23-kv substations
25 23-kv substations
27 12-kv substations
28 12-kv substations
32 12-kv substations
36 12-kv substations
37 12-kv substations
41 12-kv substations

Node in water network (child node) 4 Large pumps
5 Large pumps

12 Large pumps
2 Large pumps
3 Large pumps
6 Large pumps
8 Large pumps
9 Large pumps

39 Large pumps

© ASCE 04018015-8 J. Struct. Eng.
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correlation of seismic intensity is modeled, and correlation dis-
tance, R, in Eq. (2) is set as 30 km.

The spatially correlated damages to the RBP, EPN, and PWN
are first estimated using methodology discussed in the previous
section; the cascading failures and the effective water and power
distribution are then computed using the CFIN model; finally,
the probability of functionality loss at the building level is obtained,
and the portfolio-level functionality loss ratio is estimated using
Eqs. (19)–(22). To capture the uncertainties in both seismic de-
mand and structural damage resulting from the consider scenario
event, the spatially correlated seismic-intensity field is simulated
1,000 times, and conditional on each of these 1,000 demand fields,

the resulting physical damages to both buildings and utility net-
works are simulated for another 1,000 times in the multilayer
Monte Carlo simulation (MCS) illustrated in Fig. 2 (i.e., N1 ¼
N2 ¼ 1,000). The 1,000 × 1,000 iterations will result in an un-
biased mean estimation of BPFL with 95% confidence with less
than 5% relative error.

Fig. 6 shows analysis results from one realization of the demand
field in the MCS. Fig. 6(a) displays the spatial distribution of power
availability following the scenario event. In this realization of the
MCS, four gate stations (3, 6, 7, and 8) and three substations (34,
35, and 42) are physically incapacitated (indicated using lighting
symbols). The areas without any power are shaded dark gray, areas
with partial supply (40–70% of pre-event demand) are light gray,
and the rest of the areas are not affected by the event in terms of
power supplies (100% of pre-event demand). The north side of
Shelby County is out of power mainly because the damage of Gate
Stations 6, 7, and 8. However, because surplus power supply exists
in the system, several EPSAs are supplied by alternative gate sta-
tions. For example, Substation 41 was originally supplied by Gate
Station 7, but is now supplied by Gate Station 4 with 100% of its
normal demand following the hazard. The supply redistribution con-
ditional on the network damage is guided by maximizing the power
service coverage, i.e., maximizing the number of buildings that are
supplied by at least 40% of their pre-event demand. An area in cen-
tral Shelby County is completely out of power because the failures
of Substations 34 and 35. As previously clarified in CFIN model, if
a node is damaged, then no commodities (i.e., water or power) can
flow through it. Accordingly, Substation 33 is also failed because no
path exists from this substation to a functional gate station.

Fig. 5. Median peak ground acceleration with soil amplification

(a) (b)

(c) (d)

Fig. 6. Functionality loss from one realization of the MCS: (a) area of power outage; (b) area of water outage; (c) percentage of UO buildings;
(d) percentage of building functionality loss
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The serviceability in PWN shares some similar pattern, but also
presents significant differences from that of the EPN. As illustrated
in Fig. 6(b), Storage Tank 13 and another 10 pipelines (highlighted
in dark gray) are physically damaged. Pumping Station 12 is non-
functional because of the failure of a parent node (Substation 25).
However, no water outage is observed in the northeast broader re-
gion of Shelby because the restored water in Tanks 14 and 15 are
still functional and sufficient to meet the demand in this region,
which shows again that the supply redundancy helps mitigate water
outages under abnormal conditions. On the other hand, Water Dis-
tribution Node 40 is connected only to Water Node 39 (without
alternative supply options); hence, the damage of the pipeline con-
necting them leads to the water outage in the corresponding PWSA.

Fig. 6(c) shows that the percentage of buildings that are unsafe
to occupy (UO) in each census tract ranges from 0 to 84% because
of the large variations in the seismic intensities propagated from
earthquake epicenter to each building site. Considering the joint
effect of the physical damage and utility disruption, the spatial
functionality losses of residential buildings are shown in Fig. 6(d).
Buildings in considerable numbers of census tracts completely lost
their functionality because the absence of water or power despite
the fact that the physical damage to building portfolio itself is com-
paratively minor. For example, a large area on the north side of
Shelby suffers from complete power outage, leading to significant
functionality losses of the building portfolio in that area immedi-
ately following the hazard.

Fig. 7 presents the expected functionality loss ratio for the EPN,
PWN, and RBP resulting from the multilayer MCS for the consid-
ered scenario event. As depicted in Fig. 7(a), western Shelby is
more susceptible to power outages than eastern Shelby because
of the failure pattern of the EPN components. This is consistent
with the spatial variation of seismic intensity in Fig. 5. The average
failure probability of a gate station is approximately 60%; Gate Sta-
tions 1, 3, 4, and 7 are the most vulnerable components, especially
because they are closer to the earthquake epicenter. On average,
53% of the original demand in Shelby can be satisfied following
the considered earthquake scenario. The highest probability of
power outage is approximately 77% for the highlighted region at
northwest corner of Shelby.

The average ratio of water outage is 41% cross Shelby following
the considered scenario, as shown in Fig. 7(b). Unlike the patterns
for power outage or building damage, the spatial distribution of
water outage does not show a strong correlation with the PGA. This
is because in addition to the seismic intensity, PWN failure is also
strongly impacted by the water pipeline breaks as well as the cas-
cading effect of power outage at pumping stations. The highest
probability of water outage is approximately 80%, as seen in a few
areas highlighted in Fig. 7(b). In particular, the failure probabilities
of Intersections 36 and 40 are approximately 33%, and there is
only one path connecting these intersections with their respective
water supply nodes. Therefore, the corresponding PWSAs suffer
higher probability of water outage. In addition, the water outage

(a) (b)

(c) (d)

Fig. 7. Functionality loss ratio estimated from the multilayer MCS: (a) ratio of power outage; (b) ratio of water outage; (c) unsafe-to-occupy ratio;
(d) building FLR
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probability in central areas of Shelby is considerably high because
(1) there are only three large pumps (5, 6, and 8) in this area and no
storage tank close by for redundancy; and (2) these three pumps
provide 30% of water supply in Shelby, but the average probability
of their failure is as high as 80% for the considered earthquake
scenario.

Fig. 7(c) indicates that the expected ratio of UO buildings
(UOR) in each census tract, ranges between 13 and 47% from west
to east and positively correlates to spatial variation in seismic in-
tensity. This is because the majority of the Shelby RBP is W1 wood
structures designed with low seismic performance requirements,
making the RBP nearly homogenous in terms of seismic resistance.
The spatial distribution of building functionality loss is shown in
Fig. 7(d), which clearly reflects both the physical damage to RBP
and the service disruption trends in the EPN and PWN. The pat-
terns of functionality loss in RBP, EPN, and PWN, and, more im-
portantly, the quantitative characterization of these patterns, can
only be obtained from an estimation framework in which analysis
of different physical systems are fully coupled on a consistent
spatial scale in a probabilistic manner, as introduced herein.

Fig. 8 depicts the spatial density of the affected population, cal-
culated by multiplying the population density by building function-
ality loss ratio [cf. Fig. 7(d)] for each census tract. This result
correlates to the percentage of residents in each tract who would
need to dislocate (at least on a short-term basis) or need temporary
shelter. The building FLR is the highest at the northwest corner of
Shelby, as shown in Fig. 7(d), but the density of affected population
is low there because of sparse residences. Similarly, although the
building FLR is moderate in the central portion of Shelby, the af-
fected population density is high because this area is most heavily
populated.

Fig. 9(a) presents the aggregated exceedance probability of the
EPN and PWN outage ratio (ratio of supply shortage to predisaster
demand) for the entire Shelby area, indicating the water and power
outage ratio follow approximately uniform distributions. The ex-
pected values of water and power outage ratios are 66.39 and
70.92%, respectively. In Fig. 9(b), the UOR and FLR of the Shelby
RBP are depicted. The FLR is significantly higher than the UOR,
with expected values of 43.7 and 23.8%, respectively. This illus-
trates that neglecting the impact of utility disruption will result in
significant underestimation of building portfolio functionality loss
following a hazard event, leading to conservative estimation of the
challenges facing the community during emergency response and
postdisaster recovery. This BPFL estimation immediately follow-
ing a disaster provides a starting point for modeling the temporal

evolution of building portfolio functionality recovery, which is a
critical next step toward resilience planning.

Conclusions

This study introduced a new probabilistic framework to predict the
functionality loss of community building portfolios following ex-
treme natural hazard events, in which the functionality loss of a
building portfolio is jointly impacted by both the physical damage
of buildings and utility disruptions at the building sites. The major
attributes of the framework include the following:
• The framework fully couples the functionality analyses of phy-

sical systems of distinct topologies and hazard response charac-
teristics on a consistent spatial scale at the community level,
providing a physics-based quantitative measure of both the ag-
gregated BPFL ratio and spatial variation in functionality loss
across the geographic domain of the community;

• The framework includes a multilayer MCS to propagate the un-
certainties and spatial correlations in both hazard-demand and
structural-response parameters in each of the involved physical
systems throughout the BPFL estimation framework, forming
the basis for risk-informed planning decisions;

• The cascading failures among interdependent networks are
modeled using the CFIN model—a state-of-the-art network
flow–based mixed-integer linear programming model. The
study reveals that the cascading effect in utility networks has
a significant impact on the BPFL and, more importantly, that

Fig. 9. Exceedance probability of (a) outage ratios of EPN and PWN;
(b) UOR and FLR of the RBP

2603/km20

Fig. 8. Densities of affected population in census tracts
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the proposed framework can provide quantitative measures of
such an impact. The CFIN model can be effectively applied
to predict postevent utility outage ratios for communities with
only a minimal input of information regarding the utility net-
work topologies, expected commodity supplies and demands,
and network component fragility data. The mathematical model
can be implemented with a variety of algebraic modeling lan-
guages (e.g., GAMS) or computer programming languages
(e.g., Python) and optimized using any mixed-integer linear
mathematical programming solver (e.g., CPLEX or Gurobi);
and

• The spatial pattern of BPFL is affected by many factors, in-
cluding the spatial variation of hazard intensity, the inherent
vulnerably of buildings and components of utility systems, the
cascading failures in interdependent utility networks, as well as
the redistribution of surplus supply capacity in the utility net-
works. The proposed framework does not merely reveal such
nonintuitive spatial patterns, but also effectively quantifies the
comprehensive joint impacts, providing rich array of informa-
tion for hazard mitigation.
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