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related variables to produce a quantitative measure that an arc in the network will have a non-zero flow
in an optimal solution. The predictive model achieves 85% cross-validated accuracy. An application
employing the predictive model is presented from the perspective of identifying critical network compo-
nents based on the likelihood of an arc being used in an optimal solution.
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1. Introduction

The fixed charge network flow problem (FCNF) can be easily
described as follows. For a given network, each node may have a
supply or demand commodity requirement and each incident arc
have variable and/or fixed costs associated with commodity flow.
The aim of the FCNF is to select the arcs and assign feasible flow
to them in order to transfer commodities from supply nodes to
demand nodes at a minimal total cost. The transportation problem
(Balinski, 1961; El-Sherbiny & Alhamali, 2013), lot sizing problem
(Steinberg & Napier, 1980), facility location problem (Aikens,
1985; Daskin, 1995), network design problem (Costa, 2005;
Ghamlouche, Crainic, & Gendreau, 2003; Lederer & Nambimadom,
1998) and others (Armacost, Barnhart, & Ware, 2002; Jarvis,
Rardin, Unger, Moore, & Schimpeler, 1978) can be modeled as a
FCNF.

The FCNF problem is known to be NP-hard (Guisewite &
Pardalos, 1990). A significant amount of effort has been invested
to study and develop efficient approaches to the FCNF. Many
techniques commonly utilize branch and bound to search for an
exact solution to the FCNF (Barr, Glover, & Klingman, 1981; Cabot
& Erenguc, 1984; Driebeek, 1966; Hewitt, Nemhauser, &
Savelsbergh, 2010; Kennington & Unger, 1976; Ortega & Wolsey,
2003; Palekar, Karwan, & Zionts, 1990). Branch and bound however
may be inefficient due to lacking tight bounds during the linear
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relaxation step. Heuristic approaches to find the near-optimal solu-
tion of the FCNF have generated considerable research interest
(Adlakha & Kowalski, 2010; Antony Arokia Durai Raj, 2012;
Balinski, 1961; Kim & Pardalos, 1999; Molla-Alizadeh-Zavardehi,
Hajiaghaei-Keshteli, & Tavakkoli-Moghaddam, 2011; Monteiro,
Fontes, & Fontes, 2011; Sun, Aronson, McKeown, & Drinka, 1998).
State-of-the-art MIP solvers combine a variety of cutting plane
techniques, heuristics and the branch and bound algorithm to find
the global optimal solution. Modern MIP solvers use preprocessing
methods to reduce the search space by taking information from the
original formulations, which significantly accelerate the solving
processes (Bixby, Fenelon, Gu, Rothberg, & Wunderling, 2000). In
this paper, we take a decidedly different approach to leveraging
information from the problem formulation and FCNF instances.
That is, we are interested in gaining information about how the var-
ious topological and component characteristics relate to the selec-
tion of arcs used to transmit the optimal flow. At this time, we
have found no literature that approaches a study of the FCNF prob-
lem from the perspective of statistical learning.

FCNF formulations are useful in many practical problems. Mod-
ern societies are heavily dependent on distributed systems, e.g.
communication networks (Cohen, Erez, Ben-Avraham, & Havlin,
2000), electric power transmission networks (Dobson, Carreras,
Lynch, & Newman, 2007), and transportation networks (Zheng,
Gao, & Zhao, 2007). Designing and maintaining such systems is an
important research area in network science. In particular, develop-
ing resilient network infrastructures (i.e., resilient with respect to
natural disasters or intentional attacks) is of utmost importance
and the ability to identify critical components in complex networks
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has reached a level of national urgency (Birchmeier, 2007). The
destruction or damage of one or more critical components in a
networked system could have significant consequences in terms
of overall system performance (Bell, 2000; Smith, Qin, &
Venkatanarayana, 2003). The definition of component criticality is
often associated with an overall network performance metric. A
component whose hypothetical failure most impacts the network
performance level is identified as critical. A substantial body of
work using a variety of methods has focused on identifying critical
components within networks, e.g. topological approach (Bompard,
Napoli, & Xue, 2009; Crucitti, Latora, & Marchiori, 2005), simulation
(Eusgeld, Kroger, Sansavini, Schldpfer, & Zio, 2009), optimization
(Bier, Gratz, Haphuriwat, Magua, & Wierzbicki, 2007; Shen, Smith,
& Goli, 2012; Zio, Golea, & Rocco, 2012), service measure
(Dheenadayalu, Wolshon, & Wilmot, 2004; Scott, Novak,
Aultman-Hall, & Guo, 2006) and graph theory (Demsar,
Spatenkova, & Virrantaus, 2008). In this study we consider an appli-
cation of our statistical model with respect to identifying critical
components wherein the minimum total commodity routing cost,
inclusive of fixed costs, is the overall network performance metric.

To the best of our knowledge no existing work has developed
models to help characterize predictive network features of optimal
solutions to the FCNF. More broadly, little work has been published
so far in the application of statistical learning to traditional opti-
mization or network problems. Rocco and Muselli (2004, 2005)
developed a decision tree and a hamming clustering model to pre-
dict network connectivity reliability in graphs. Hamming cluster-
ing is applicable only if both the predicted value and all
predictors are binary (Muselli & Liberati, 2002). The binary predic-
tions relating to connectivity were made based on a single type of
predictor - the status of each arc in the graph as either failed or
operating. Based on this information they attempted to evaluate
the reliability of origin-destination connectedness. Empirically
they create one network instance (11 nodes, 21 edges) and ran-
domly sample from the possible state space of edge failures.

Among the possible 22! states, 2000 were assigned to a training
set and 1000 assigned to a test set. The models were developed
on the 2000 training observations and highly accurate predictions
were observed on the test set. While the predictive models devel-
oped were highly accurate, they are inherently linked to the single
network instance considered.

In this study we employ a statistical learning technique to ana-
lyze the data associated with optimal FCNF solutions and we
develop a relatively generalizable model based on several salient
network features to predict which arcs will be used in an optimal
solution. By solving thousands of generated FCNF instances we col-
lect over 60,000 observations and develop a logistic regression
model based on the dataset. This model allows us to quantify the
influence of several important network characteristics. The result-
ing model has several potential applications. In this study, we
demonstrate an application for providing an alternative approach
to identifying critical network components. The remainder of this
paper is organized as follows. Section 2 introduces the background
of the FCNF and the logistic regression model. The process for
developing the predictive model is discussed in Section 3. The
identification of critical components using the model is presented
in Section 4. Section 5 summarizes the results and introduces
planned future work.

2. Background
2.1. Fixed charge network flow problem

The fixed charge network flow (FCNF) problem is described on a
network G = (N,A), where N and A are the set of nodes and arcs,

respectively. Let ¢; and f; denote the variable and fixed cost of
arc (i,j) € A, respectively. Each node i€ N has a commodity
requirement r; associated with it (if it is a supply node, r; > 0; if
a demand node, r; < 0; if a transshipment node, r; = 0). An arc
parameter Mj is used in the problem formulation to ensure that
the fixed cost f; is incurred whenever there is a positive flow on
arc (i,j) € A. There are two decision variable types: y; which
denotes the decision variable to use arc (i,j) € A in a solution and
x;; denotes the commodity flow on (i,j). The mathematical formu-
lation is as follows,

min z (cixij + fYy) M
(ij)eA
st. Sx— S xi=r VieN (2)
(ieA (A
0 <x; <My, Y(ij)cA )
Yy € 0.1} W(ij)eA @

Constraint (2) ensures that the inflow and outflow satisfy the
supply/demand at node i € N. The parameter M; in constraint (3)
is either the associated arc flow capacity or an artificial arc capacity
(for uncapacitated problems). The constraint ensures that the flow
on arc (i,j) € A can be positive only when the arc (i,j) € A is open
(y4 = 1). If arc (i,j) does not have a capacity, M; should be set to
a value which is large enough to not inhibit the optimal flow. All
problems in this study are uncapacitated and each Mj is set to
the total supply in the network. Constraint (4) defines y; as binary,
which makes the problem a 0-1 mixed integer programming
problem.

2.2. Logistic regression

Logistic regression is a widely-used technique for classification
modeling and is commonly used in business modeling, data mining
applications, biological fields, and others (Camdeviren, Yazici,
Akkus, Bugdayci, & Sungur, 2007; Hosmer, Lemeshow, &
Sturdivant, 2013; Menard, 2002). While there are many classifica-
tion modeling techniques (e.g., support vector machines, random
forests, boosted trees), logistic regression has an advantage regard-
ing model interpretability. Decision trees which are also easy to
interpret have a drawback in that they are often unstable. That
is, the rules generated by a decision tree are highly sensitive to
the instance of training data (Friedman, Hastie, & Tibshirani,
2001). Given that we are interested in analyzing data to under-
stand the characteristics of optimal FCNF solutions, interpretability
and stability are important.

We denote the dependent variable (also called a response vari-
able) as Y and define it as follows,

v={y
01

The logistic regression function produces a probability that the
response variable equals 1 given the data values observed for the
associated k predictor variables, py, ..., D,

1
14e (/fn+zlk,]/ﬂpi)

arc has positive flow in the FCNF optimal solution
otherwise.

P(Y =1|p;,....p) = )

where the parameters f,,..., B, are regression coefficients deter-
mined using maximum likelihood estimation during the modeling
process. For a given set of observed values, the binary response vari-
able is set to 1 if the predicted probability exceeds a cut-off point.
The details for setting the cut-off value are discussed in Section 3.4.

The p values in a logistic regression model are interpreted sim-
ilar to linear regression, in that, they represent partial slopes
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(albeit, the slope is with respect to the log odds) and represent
effects assuming all other predictors are held constant. To interpret
the regression coefficients in a logistic regression, it is useful to
exponentiate the coefficient to compute the odds ratio for that

associated predictor. For instance, if predictor p; has a regression
coefficient f;, the odds that an arc is selected, py—g, is affected
by changes in the value of p,. For every one unit increase in p,
(holding all other predictors constant) the odds are multiplied by

the factor e#1.

3. Predictive modeling
3.1. Feature engineering

Feature engineering is a term from machine learning used to
denote the process of determining and/or deriving predictor vari-
ables used in model. Based on initial testing we derive four types
of predictors for the classification model: overall network level
characteristics, arc specific attributes, linear relaxation based vari-
ables, and lastly, variables related to the nodes incident to an arc.
These predictors are developed with a basic guiding principle of
being easily understandable and accessible from an original prob-
lem instance.

Several of the predictors are scaled to range from 0 to 1. As this
can help with the interpretation of variables across diverse FCNF
instances. To achieve this scaling, various predictors as described
below will be divided by either the total supply or the total number
of nodes in a generated FCNF instance. Nevertheless, information
regarding the actual sizes of the instances are likely to be impor-
tant as well. Therefore, some variables are not transformed, namely
the number of nodes and number of arcs in the instance.

At the network level, the characteristics considered are the
number of nodes (n), number of arcs (m), total commodity supply
(S), and density of network, p = oy Since the total supply
amount and the network size are possibly correlated, we transform
S to the average supply per node, S = 5. The arc specific attributes
include the variable cost, the fixed cost, and the ratio of these

two values, y; :% for every (i,j) € A.

The linear relaxation solution of the FCNF problem produces
two important predictors for the proposed model. The first of
which is related to the value of the flow on arc (i,j) from the
relaxed solution (denoted as I;). Let I; reflect the scaled version
of this predictor defined as the ratio of I; to total available com-
modity supply S, since S is an upper bound on feasible flow values,
li :% Y(i,j) € A.

Note that 0 < I;j < 1 ¥(i,j) € A. The second predictor we derive
from the linearized solution is the binary variable Ig- defined as

B 17

We construct predictors relating to the endpoints of arc (i,j).
These predictors include the node types (supply, demand, trans-
shipment), total requirement values, indegrees, and outdegrees
for both the tail and head node. The quantity and types of nodes
adjacent to i and j may also have an influence on the response vari-
able associated with (i,j). Let t; be a nominal variable which
denotes the type of node i € N having three factor levels,

Tij >0
otherwise.

1, ri>0
t,': 0, T,':O.
—1, ri<O0

Let d;, denote the outdegree of node i. Let df* (dg ) denote the num-

ber of supply (demand) head nodes adjacent to node i. Let 5, (1?)
denote the sum of supply (demand) requirements of the head nodes
adjacent to node i. Similarly, the indegree of node i is denoted as d.,;,
the number of supply (demand) tail nodes adjacent to node i is
denoted by d°, (d°), and sum of commodity supply (demand) of tail
nodes adjacent to node i are denoted as r5; (r2). Fig. 1 illustrates
these notations for a small network. The number under each node
is the requirement value associated with that node.

To scale the predictors relating to node degrees to the range
[0, 1], each is divided by the number of nodes n to produce the final
predictors d;, di., d, d2, d., d5, d° (VieN). The predictors
related with requirements are divided by the total supply S, to pro-
duce the variables 7;, 75, S, ™2 (Vi € N). In summary, the 33
potential predictors for arc selection of an individual arc (i,j) are
summarized in Table 1.

7D

[ER)

3.2. Data collection for model training

In supervised learning, data must be collected on all of the pre-
dictors and the associated response variable in order to both train
and validate a model. To do so, we generate and solve over a thou-
sand single-commodity FCNF instances using GUROBI 5.6 on a
Windows 7 64 bit machine with an Intel Xeon E5-1620 CPU and
8 GB RAM.

FCNF instances are generated by a series of steps to ensure the
network is connected and that problem instances are feasible. For
the training data, the total number of nodes is randomly generated
uniformly between 5 and 15. Each node is labeled with a unique
index, i =1,2,...,n. For every node i > 1, an arc (i, k) is added to
the instance where k < i is a randomly selected node index. These
n — 1 arcs ensure the network is connected. To randomize the total
number of arcs in each final instance, a random number myqq iS

drawn from a uniform discrete distribution on [0, (n — 1)*]. Subse-
quently, m,qq arcs are added to the instance by iteratively selecting
at random two nodes i,j € N, i # j which are not adjacent to each
other and adding arc (i,j) to the instance. For each arc (i,j) in the
instance, arc (j,i) is added to ensure bi-directionality. Therefore,
the total quantity of arcs m is an even integer between 2(n —1)
and n(n —1).

The percentage of supply and demand nodes are each randomly
selected on U(0.15,0.45). For example, in one problem instance,
32% of the nodes might be defined as supply nodes and 18% might
be assigned as demand nodes. The requirements for each supply
node is randomly assigned as an integer value on U(1000,2000).
The total supply is randomly distributed as negative integer
requirements to the demand nodes. The variable costs and fixed
costs for each arc are randomly assigned on U(0,10) and
U(20, 000, 60,000), respectively. The test instances referred to in
Section 3.4 will be generated in similar fashion with the only
exception being the range for determining the number of nodes
in each instance. For the training dataset, we solve smaller prob-
lems (5 <n<15) so that optimal solutions to many problems
can be found quickly. Descriptive statistics of each feature in our
training dataset are reported in Table 2. Note that tail and head
nodes share the same statistical information. Furthermore, the
bi-directionality of the generated instances entails that some of
the endpoint-level predictors described in Section 3.1 are equiva-
lent. That is, for the current study, all predictors related to adjacent
nodes to an endpoint being either head nodes or tail nodes, must
be equivalent, e.g., d,; = d;. and T,; = r;,, etc. Prior to training the
model, the 10 endpoint-level predictors associated with arc (i,j)
having subscripts (i) or (xj) were removed. This leaves 23 poten-
tial predictors for model development.
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Fig. 1. Predictors associated with node i.

Table 1
Candidate predictors for the regression model.
Predictor Notation Description
level
Network n Number of nodes

m Total number of arcs

P Network density

S Average supply

Arc Cjj Variable cost of arc (i, )

fij Fixed cost of arc (i, )

Vi Ratio between fixed cost and variable cost of arc
(.0

LP solution I,.]. Normalized value of linearized relaxation solution

of arc (i,j)

lg Binary variable that equals 1 if [; > 0, and 0,
otherwise

Endpoints of ti Type of tail node i
(i,)) t Type of head node j

T Requirements of tail node i

T Requirements of head node j

75 Sum of supply requirements of head endpoints
adjacent to node i

fg Sum of demand requirements of head endpoints
adjacent to node i

7; Sum of supply requirements of tail endpoints
adjacent to node i

P Sum of demand requirements of tail endpoints

adjacent to node i

f]i Sum of supply requirements of head endpoints
adjacent to node j

fj[: Sum of demand requirements of head endpoints
adjacent to node j

ffj Sum of supply requirements of tail endpoints
adjacent to node j

f?}. Sum of demand requirements of head endpoints
adjacent to node j

d;, Outdegree of tail node i

[jiS* Number of supply head nodes adjacent to node i

[jﬁ Number of demand head nodes adjacent to node i

d,; Indegree of tail node i

Eﬁi Number of supply tail nodes adjacent to node i

El?,» Number of demand tail nodes adjacent to node i

aj* Outdegree of head node j

aj% Number of supply head nodes adjacent to node j

[1],2 Number of demand head nodes adjacent to node j

ELJ- Indegree of head node j

afj Number of supply tail nodes adjacent to node j

al:“']_ Number of demand tail nodes adjacent to node j

Each of the 61,594 observations recorded in the training dataset
corresponds to an arc from one of the 1067 FCNF solved instances.
The response variable y; is the binary variable in the optimal solu-

Table 2
Statistical information of features in the training data.
Notation Min. 1stqu. Median Mean  3rd qu. Max.
n 5.00 10.00 12.00 11.71 14.00 15.00
m 8.00 50.00 84.00 89.86 126.00 210.00
P 0.13 0.51 0.72 0.69 0.88 1.00
S 84.93 307.20 456.75 480.50 622.93 1325.80
Cij 0.00 2.52 5.00 5.01 7.49 10.00
fij 20,000 29,998 39,983 40,024 50,056 60,000
Yii 2018 5242 7997 42,839 15,942 141,547,369
]ij 0.00 0.00 0.00 0.02 0.00 1.00
[3 0.00 0.00 0.00 0.11 0.00 1.00
ti, t; -1.00 -1.00 0.00 0.15 1.00 1.00
T, T -1.00 -0.16 0.00 0.00 0.15 1.00
FI,S*, ’715* 0.00 0.40 0.60 0.60 0.90 1.00
FIQ, ﬁ* —1.00 -1.00 —0.69 —0.65 —0.45 0.00
ffr f\fj 0.00 0.00 0.00 0.64 1.01 10.00
[ Fljj -11.00 -1.00 0.00 —-0.66 0.00 0.00
d,. 0.07 0.50 0.67 0.64 0.83 0.93
EllSw [1]5* 0.00 0.17 0.27 0.28 0.38 0.83
ag, [jjlz 0.00 0.10 0.17 0.18 0.25 0.67
d.;, a‘j 0.07 0.50 0.67 0.64 0.83 0.93
af'_‘ afj 0.00 0.00 0.00 0.28 0.62 0.93
[jﬂ, [j?j 0.00 0.00 0.00 0.18 0.36 0.93
Yii 0.00 0.00 0.00 0.11 0.00 1.00

tion of the FCNF instances. The number of arcs in the instances
ranges from 8 to 210. The instances are each generated such that
the ratio of fixed to variable costs are relatively large. The average
value for the response variable y; is quite low: only 11% of arcs
across all instances are used in the optimal solutions overall. There
is evidence to suggest that statistical learners may be impaired in
the presence of highly imbalanced data and there is active research
in this area (Chawla, Japkowicz, & Kotcz, 2004; He & Garcia, 2009).
Random undersampling on the majority class can be an effective
technique for handling imbalance (Burez & Van den Poel, 2009;
Hulse, Khoshgoftaar, & Napolitano, 2007) and we apply this
method to the training data. The revised dataset for training the
model contains 13,349 rows, 51% of which have a value for y; of 1.

3.3. Model development

A logistic regression model is fit based on the balanced training
data. We use R version 3.0.2 and the “glm” function from the base
statistical package to fit the model using iteratively reweighted
least squares for maximum likelihood estimation.

Feature selection is employed by means of backwards stepwise
regression based on the Akaike information criterion (AIC) (Akaike,
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1974; Venables & Ripley, 2002). Stepwise feature selection tech-
niques are heuristic approaches to find a balance between model
complexity and predictive power. Best subset selection requires
the evaluation of all possible model subsets and is often computa-
tionally infeasible. In the present case, best subset selection would
require 2> model evaluations.

AIC backward stepwise selection is an iterative procedure that
evaluates individual model possibilities by removing predictors
one at a time from the current model. Models that are likely to
be too complex and “overfit” the training data are penalized. The
MASS package for R and the function “stepAIC” are used to perform
model selection. Predictors are removed until the AIC score is min-
imized. The predictors eliminated from the candidate set by the
AIC stepwise selection are m, 7;, di., d;., and d°. A predictor
may be selected for elimination due to an inherently insignificant
contribution to the explanatory power of the statistical model; or
possibly, that given the presence of other predictors in the model,
the incremental predictive power of the eliminated feature is insuf-
ficient to justify the additional model complexity from including
the feature. The latter is the case in the present model. A separate
regression model was fit with only the eliminated variables and
each proved to be statistically significant as model covariates.
The model estimation and selection converges without issue
within 10 min. The final logistic regression model contains 18 pre-
dictors. These predictors, their regression coefficients (), standard
errors, odds ratios (OR) computed as e”, and p-values are reported
in Table 3. Note that there are two coefficients for the predictors t;
and ¢; since these variables each have three factor levels. The refer-
ence cases are t; = —1 and t; = —1.

3.4. Model validation

The logistic regression model assigns a probability value to each
arc in an FCNF instance. If the probability for arc (i,j) exceeds a
threshold value t, the arc is predicted to be used in an optimal solu-
tion (i.e., the predicted value for the associated y; is 1). To maxi-
mize observed accuracy, we set the threshold to 0.50. Using 10-
fold cross validation the estimated predictive accuracy of the
model on the training data set is 0.878. That is, 87.8% of the arcs
are correctly predicted as “optimal arcs”, those used in an optimal

Table 3
Final logistic regression model.
Predictors p Std. error OR Pr(> |z])
(Intercept) 9.432 0.288 12481.465 < 0.001
n -0.131 0.011 0.877 < 0.001
p -2.451 0.255 0.086 < 0.001
S —0.0002 < 0.001 1.000 0.080
Cjj —-0.087 0.010 0917 < 0.001
fi —0.0001 < 0.001 1.000 < 0.001
Iy 5.503 0.513 245.427 < 0.001
15 1.432 0.116 4.187 < 0.001
t;=0 —2.142 0.130 0.117 < 0.001
ti=1 1.226 0.132 3.408 < 0.001
=0 —3.423 0.134 0.033 < 0.001
=1 -1.062 0.131 0.346 < 0.001
T 0.818 0.216 2.266 < 0.001
T —-0.464 0.209 0.629 0.0262
7 0.997 0.172 2.710 < 0.001
[ 0.844 0.157 2.326 < 0.001
f]i -1.035 0.173 0.355 < 0.001
FJ‘.Z —-0.638 0.122 0.529 < 0.001
s -3.021 0.416 0.049 < 0.001
dP —1.088 0.441 0.337 0.014
ds 1.286 0413 3.618 0.002

Note: i refers to the tail node and j refers to the head node of arc (i,j) € A.

solution, or as “non-optimal arcs”, those not used in an optimal
solution. The associated confusion matrix associated with the
hold-out folds is reported in Table 4. The model correctly predicts
5702 arcs as non-optimal (true negatives are denoted as TN) and
6027 as optimal arcs (true positives denoted as TP). There are
740 false negatives (denoted as FN) and 880 false positives
(denoted as FP) in which the model incorrectly assigns a value of
0 to an arc that is an optimal arc and a value of 1 to a non-
optimal arc, respectively. Accuracy is defined as the sum of true
positives and true negatives divided by the total classifications.
The true positive rate (TPR) is defined as ¥ and represents the
percentage of optimal arcs captured by the model. The false posi-
tive rate (FPR) is defined as &5y and measures the percentage of
non-optimal arcs misclassified as optimal arcs. The threshold value
t can be adjusted to reduce false positive rate or false negative rate.

To further validate the model, a set of 182 larger FCNF instances
(15 < n < 25,28 < m < 592) are generated and solved to evaluate
the predictive performance for more complex FCNF instances. The
test dataset contains 37,651 observations. Similar to the training
data, each observation refers to an individual arc. The arcs, their
set of associated features, and the observed statuses of use in opti-
mal solutions, are accumulated from all 182 solved FCNF problem
instances. Descriptive statistics associated with the test data are
reported in Table 5. Since the test data is generated with the same
logic as the training data, many of the feature distributions are
similar to the training data. The primary difference is with respect
to the size of the network instances. To conserve space, only the
feature statistics from the test dataset that are notably different
from the training data are reported. In the test data, 7% of the arcs
are used in optimal solutions. The confusion matrix reported in
Table 6 shows that the accuracy remains high at 83.4%. The FPR
and TPR values also remain good. This provides evidence that the
predictive model is not specific only to the training data, but that
it is useful on larger and more complex problem instances.

The receiver operating characteristic (ROC) curve is a common
visualization technique for understanding the performance of clas-
sification models. The ROC curve plots TPR versus FPR for different
threshold values t. The ROC curve associated with the classifier
performance on the test data is depicted in Fig. 2. The area under
the ROC curve (AUC) ranges from O to 1 and is a measure of the dis-
criminatory power of the model, with a perfect predictive model
obtaining a value of 1. The diagonal line on the chart represents
a baseline model with no discriminatory power and has an AUC
of 0.5. AUC values exceeding 0.90 denote models with “outstand-
ing discrimination” performance (Hosmer et al., 2013). The AUC
value obtained with the logistic regression predictive model is
0.95.

To explore the model performance on the test data in more
detail, the AUC performance metric is reported in Table 7 for sub-
sets of the test data associated with various instance characteris-
tics. In particular, for problem instances with high/low quantities
of nodes, arcs, density values, and average supplies per node are
isolated and evaluated. The distinction between “high” and “low”
is made with respect to the median value of the corresponding fea-
ture as reported in Table 5. The number of observations associated
with each subset specification is also reported. The two character-

Table 4
Cross-validated confusion matrix with training data.
Predicted
yj=0 yi=1
Actual
y;=0 5702 (TN) 880 (FP) FPR: 0.13
yi=1 740 (FN) 6027 (TP) TPR: 0.89
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Table 5
Notable feature values in the test dataset.
Feature Min. Ist qu. Median Mean 3rd qu. Max.
n 15.00 19.00 20.00 20.62 23.00 25.00
28.00 192.00 268.00 271.90 356.00 592.00
p 0.10 0.51 0.68 0.66 0.87 0.99
S 58.22 312.20 476.90 464.20 565.50 993.60
Vi 0.00 0.00 0.00 0.07 0.00 1.00
Table 6
Confusion matrix with test data.
Predicted
Yij = 0 Vi = 1
Actual
yj=0 29,100 (TN) 6083 (FP) FPR: 0.17
yi=1 157 (FN) 2310 (TP) TPR: 0.94

True positive rate
0.4 0.8
|

0.0

T
0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

Fig. 2. ROC plot for test dataset.

istics that stand out are the number of arcs and graph density. In
both cases, the results indicate that the model has potentially bet-
ter discriminatory power for instances with a larger number of arcs
and increased density.

3.5. Model interpretation

The interpretation of the regression coefficients in Table 3
reveals several interesting relationships between the characteris-
tics of FCNF instances and the arcs used in optimal solutions. Sev-
eral of these relationships are now discussed.

3.5.1. Network-level predictors

The coefficients for the number of nodes, n, and the graph den-
sity, p, are both negative. This is a logical outcome. That is, as the
size and density of the network increases, the likelihood that a
given arc is chosen in an optimal solution decreases. Intuitively,
increasing the density results in more alternative paths in the net-
work and therefore, the overall probability for an arc to be selected
in the optimal solution is reduced. The average supply per node, S
also has a small but negative coefficient.

3.5.2. Arc-level predictors
At the arc level, the regression coefficient for variable cost ¢; is
also negative and has an odds ratio equal to 0.917. This means that

for every 1 unit increase in c; (all other factors held constant) the
odds that arc (i,j) is used in an optimal solution decreases by 8.3%
where percent change in odds is computed as 100% x (ef — 1).

The coefficient for fixed cost is also negative. While the absolute
value of the fixed cost predictor coefficient is much smaller than
the variable cost predictor coefficient, it is important to consider
the measurement of scale. The range of values used in the instance
data for the variable cost and the fixed costs are vastly
different, i.e., in the training data, 0 < c; <10, whereas
20,000 < f; < 60,000. A single unit increase in fixed cost for a
given arc does not make a notable impact on the selection proba-
bility, however, since the range of values is much larger, a large
increase in fixed cost is possible.

While the odds ratios provided in Table 3 correspond to a one
unit change increase in the predictor value, the odds ratio for a
k > 0 increase of the predictor value is easily computed as e
and the corresponding percent change in odds is
100% x (¥ — 1). For example, with all other factors held constant,
if an arc with fixed cost originally equal to 40,000 has its cost
increased by 10% (to 44,000), then the odds of selection decrease
by 44%. For the variable cost, however, a similar 10% increase (from
4 to 4.4) would only decrease the selection odds by 3.4%.

3.5.3. LP solution-level predictors

Notably, the coefficients related to the LP solution predictors are
both positive. An arc which has positive flow in the linear relaxed
FCNF (75 = 1) has 319% increase in odds for selection as compared
to an arc which is not used in the LP relaxed solution. The associ-

ated standardized flow predictor, I;, has value ranging from 0 to
1. A value of 1 implies that the commodity flow is at maximum
capacity. For the problems under study, the arcs are uncapacitated
and the logical upper limit to flow on (i,j) is My which equals the
total supply in the instance. For every ten percentage point
increase in this value, arc selection odds increase by 73%.

Traditionally, information related to LP relaxation solution val-
ues are commonly employed to guide the branch and bound tech-
nique at either the root node or branching nodes (Danna, Rothberg,
& Le Pape, 2005; Fischetti & Lodi, 2003; Lodi, 2010; Zhang &
Nicholson, submitted for publication). While these two predictors
are highly influential in the present model, they are insufficient
by themselves to accurately predict arc selection. A logistic regres-
sion model built solely from linear relaxation information resulted
in diminished model accuracy, with the reduced performance com-
ing from the revised model’s inability to identify true positives
(TPR reduces from 0.89 to 0.58): the simpler model produces many
more false negatives than the full model (2844 compared to 740).
Additionally, the model based only on the LP relaxation features
produces an AUC value of 0.71 which is on the very low end of
“acceptable discrimination” (Hosmer et al., 2013).

3.5.4. Endpoint-level predictors

Finally, characteristics associated with the endpoints of an arc
are notably significant factors in accurately predicting that an arc
will be selected for use in an optimal solution. An arc is more likely
used in an optimal solution if its tail node is a supply node as
opposed to a demand node. In particular, the odds for selection
of arc (i,j) increase by 241% when t; = 1 (supply) as opposed to

Table 7
Model performance for various test instance characteristics.
Nodes Arcs Density Average supply
n>20 n<20 m > 268 m < 268 p > 0.68 p <0.68 S>476.9 5$<476.9
Obs 18,658 18,992 18,770 18,880 18,912 18,738 18,728 18,922
AUC 0.949 0.951 0.968 0.934 0.972 0.931 0.949 0.948
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Fig. 3. Small directed network with 10 nodes and 28 arcs.
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Table 8
Probability and failure effect for each arc in network.

Arc(i,j) Cjj fi CIM;; 1
(7,6) 7.20 41011.33 0.99 10.22 %
(9,0) 6.51 44846.94 0.99 6.78 %
(1,0) 9.69 42158.06 0.99 7.81%
(9,4) 5.95 22028.81 0.97 7.81%
(6,7) 1.93 24561.2 0.97 10.22 %
(0,9) 3.10 28765.87 0.95 6.78 %
(1,2) 7.17 44364.01 0.94 037 %
(2,5) 8.90 52552.74 0.86 037 %
(8,0) 7.54 26588.18 0.68 4.54 %
(5,8) 3.90 28365.83 0.67 7.81%
(7,3) 1.47 43307.38 0.57 7.81%
(4,6) 9.09 53894.9 0.53 4.54 %
(8,7) 0.13 33349.63 0.50 7.81%
3,7) 4.93 40543.16 0.41 037 %
(4,9) 1.21 48247.28 0.26 0.00 %
(7,8) 5.68 49949.96 0.23 0.00 %
(5,2) 2.53 46060.27 0.23 0.00 %
(0,8) 8.61 47039.03 0.17 0.00 %
(8,5) 4,01 57456.67 0.16 0.00 %
(2,1) 5.07 50998.22 0.16 0.00 %
(6,4) 7.67 48589.75 0.12 0.00 %
(2,3) 5.90 31594.21 0.08 0.00 %
(3,2) 343 4112717 0.06 0.00 %
(0,1) 1.27 56093.72 0.04 0.00 %
(4,2) 7.62 39342.56 0.04 0.00 %
(4,3) 4.77 46389.37 0.02 0.00 %
(3,4) 6.18 48528.36 0.02 0.00 %
(2,4) 3.63 54166.87 0.01 0.00 %

0.06 Average 9.2%
2 0.04 —
2
[
o
0.02
0.00 [T [ [

20

Failure Effect

Fig. 4. Distribution of failure effect by removing top two critical arcs.

the reference class, t; = —1 (demand). There is a 65% decrease in
odds, however, if the head node is a supply node (t; = 1) instead
of a demand node (t; = —1). The coefficients associated with the

head node or tail node of (i,j) being transhipment nodes (i.e.,
t; =0 and t; = 0) are both highly negative. This implies a notable
decrease in likelihood of arc selection with respect to the associ-
ated reference class.

Each unit increase in the standardized requirements at a tail
node (7;) increases the odds of arc selection by a factor of 2.27. Each
unit increase of requirements at a head node (7;) decreases the
odds of selecting arc (i,j) by 37%. Furthermore, as the total supply
or total demand at nodes adjacent to the tail node i increases (7; or
P), the odds of (i,j) selection increase by 171% and 133%, respec-
tively. Interestingly, this the opposite effect is observed when con-
sidering the head node. As the total supply or total demand at
nodes adjacent to the head node j increases (Tf or fJD), the likelihood
of (i,j) selection decreases.

The number of supply or demand nodes adjacent to the tail
node i of arc (i,j) also is important. Holding all other factors con-
stant, an increase in either d or d? decreases the likelihood of
arc selection. This is an interesting finding. Consider, for example
the tail node of (i,j), holding 7 and other factors constant, the
model gives a higher likelihood of selection if i is adjacent to a
fewer number of nodes with large supply as opposed to a larger
quantity of nodes with smaller supplies. For every extra supply
node adjacent to i, the odds of selecting (i,j) decreases by 95%.
For the head node, an increase in number of adjacent supply nodes
increases the odds of selection.

4. Critical components identification

The logistic regression model successfully discriminates
between “optimal” and “non-optimal” arcs in FCNF solutions. In
this section we develop and demonstrate an application of such
information for critical network component identification. A com-
ponent importance measure (CIM) is often computed to rank nodes
or arcs in terms of their potential impact on a network perfor-
mance measure. The performance measure we use is the FCNF
optimal objective value. Since the FCNF problem is NP-hard, admit-
tedly no existing literature uses it as a measure for network perfor-
mance. However, the optimal objective values implicitly
encompasses a variety of metrics which are widely used to evalu-
ate network performance, e.g. network flow, link capacity, delivery
costs, and network connectivity. The predictive model provides an
efficient and practical method to produce importance measures
related to the FCNF optimal solution. We define the CIM as the
arc probability values assigned by the classifier. Intuitively,
destruction of the more probable “optimal arcs” will likely result
in a non-optimal (more expensive) routing of commodity flow.

The novel CIM is implemented and evaluated on a small FCNF
instance. We define the actual criticality of an arc as the percentage
increase in the FCNF solution cost caused by the destruction of the
arc. Let zy denote the FCNF solution cost with all arcs present and
undamaged. Let z; denote the optimal objective when arc (i,j) is
removed from the network and let #7; denote the associated failure
effect,

Zi — 2o
Ny = "T x 100%.

While it is not practical to compute to 7; for real-world FCNF
problems, the predictive model is computationally efficient. For
the CIM to be valid, there should be a strong rank correlation
between CIM and the # values.
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To illustrate the method, consider the 10 node FCNF instance in
Fig. 3. Nodes 1, 7 and 9 are supply nodes and nodes 0, 5 and 6 are
demand nodes. The arrow on the line indicates the direction and
each node-pair has two directed arcs, for a total of 28 arcs. The
value of z, for this instance is 316,074. Table 8 displays the variable
cost, fixed cost, CIM, and failure effect for each arc comprising the
network. Note, since this is a directed network, arc (i,j) € A is not
the same as arc (j,i) € A and neither are the failure effects. For
example, the CIM value and failure effect of arc (9,4) are much
higher than arc (4,9).

Based on this table, the CIM of arcs (7,6) and (9,0) is 0.99, and
their failure effects are 10.22% and 6.78%, respectively. Although
they do not have the lowest variable cost or fixed cost, the end-
points of these two arcs are a pair of supply and demand nodes.
Some arcs with low costs, e.g. (6,7),(0,9),(8,0),(5,8) and (8,7),
have high CIM values as well. These arcs can be contrasted with
arcs with very low CIM values, which do not have any failure
effects. The Spearman’s rank correlation between the CIM and
the failure effect values is 0.87.

In order to evaluate the quality of the CIM, we conduct an
experiment on 100 generated FCNF problems with a variety of den-
sities. Each instance is composed of 20 nodes with the number of
arcs ranging from 38 to 380. In this experiment, we perform a com-
parison of the failure effects resulting from the destruction (i.e.,
removal) of the two arcs with the highest CIM values as compared
to impact from destroying the two arcs with the lowest CIM values.

The failure effect distribution resulting from the removal of the
top critical arcs is displayed in Fig. 4. The average effect due to the
failures of the most critical arcs is a 9.2% increase in the objective
value. In some cases, the failure effect exceeds 30%. The failure
effect resulting from the removal of the two lowest CIM rated arcs
averages only 0.21% and in 94% of the test cases, the failure effect is
0%. Consequently, it is reasonable to conclude that the arcs with
the highest CIM values are more important to the FCNF solutions
and may deserve more investment to protect them from various
hazards.

5. Conclusions

In this investigation we develop a predictive model to deter-
mine whether or not arcs are selected for flow in an optimal solu-
tion of a FCNF problem. To do so, we generate and solve over 1000
FCNF instances. The final model, based on 18 derived network
related features, allows for high quality discrimination of “optimal”
and “non-optimal” arcs. Application to larger FCNF instances retain
the predictive performance.

Since we employ a logistic regression technique, the model also
has useful explanatory power regarding the predictors defined. The
model reveals important quantitative information regarding why
arcs are selected in FCNF solutions. Predictors relating to the type,
degree, and requirements of the tail and head nodes of an arc are
highly relevant to arc selection. The linear relaxation information,
while inadequate alone, works well within the larger model to
identify optimal arcs. The model predictors and their regression
coefficients are rational and intuitive. It is believed that these rela-
tionships are valid, at least directionally, among a wider class of
FCNF instances and can be used as a “rule-of-thumb” to help
understand the problem class. The successful application of the
model to the larger problem instances supports this hypothesis.

One successful application of the predictive model is presented
in this work. A components importance index is developed based
on the probability of arc selection. Empirically, we demonstrate
that the impact on network performance from failures of high
CIM arcs is substantially greater than that from failures of low
CIM arcs.

Since the FCNF is an NP-hard problem with widespread applica-
tion, the problem is, and has been, the focus of many research
efforts for many years. This paper provides an original method to
analyze the optimal solution of the FCNF. In future work, we will
continue to explore applications of this model in areas such as
reducing computational time for exact solutions and developing
novel approximate approaches for the FCNF. Furthermore, we real-
ize that there is significant future work in exploring model devel-
opment to improve predictive accuracy and/or generalization.
Additionally, there is much to learn regarding predictive modeling
relating to distinct topological patterns and more complex network
instances. We hope to continue to develop and motivate ideas in
this area.
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