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ABSTRACT
One strategy to mitigate social and economic vulnerabilities of communities to natural disasters
is to enhance the current infrastructure underlying the community. Decisions regarding allocation
of limited resources to improve infrastructure components are complex and involve various trade-
offs. In this study, an efficient multi-objective optimization model is proposed to support decisions
regarding building retrofits within a community. In particular, given a limited budget and a
heterogeneous commercial and residential building stock, solutions to the proposed model allow
a detailed analysis of the trade-offs between direct economic loss and the competing objective of
minimizing immediate population dislocation. The developed mathematical model is informed by
earthquake simulation modeling as well as population dislocation modeling from the field of social
science. Themodel is applied to the well-developed virtual city, Centerville, designed collaboratively
by a teamof engineering experts, economists, and social scientists. Multiple Pareto optimal solutions
are computed in the case study and a detailed analysis regarding the various decision strategies is
provided.
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1. Introduction

The built environment plays a vital role in ensuring the
well-being of a community. The conditions of the phys-
ical infrastructure in the direct aftermath of an extreme
hazard may have significant economic and social conse-
quences for a community. The economic loss includes
direct economic loss of building damage and long-term
indirect loss (e.g. shutdown of business). The social con-
sequences refer to many elements and include popula-
tion dislocation. Dislocation has been studied as function
of direct damage to residential structures (among other
factors) and most residential buildings in the United
States are wood-frame structures vulnerable to seismic
demands. For example, the 1994 Northridge earthquake
caused $40 billion in loss and the economic loss of wood-
frame structures alone was over $16.2 billion (Okuyama
& Chang, 2013). From 2000 to 2015, there were between
79 and 242 disaster declarations each year (FEMA, 2016).
Given such high cost and frequency of large scale disrup-
tive events, developing concepts andmethods to improve
the resilience of communities is an important area of
research.

A significant quantity of work has been invested in
the study of effective definition and metrics for commu-
nity resilience (Bocchini & Frangopol, 2011; Bruneau,
2006; Hosseini, Barker, & Ramirez-Marquez, 2016). One

CONTACT Charles Nicholson cnicholson@ou.edu

of the more commonly used frameworks for describing
resilience within communities was proposed by Bruneau
et al. (2003) and includes four dimensions: the ability for
communities to withstand disasters (robustness),
recover quickly after a disaster (rapidity), substitute sys-
tem components for others if needed (redundancy), and
identify problems and mobilize resources after an event
(resourcefulness). Effective pre-disastermitigation strate-
gies are an important element of enhancing community
resilience. Current practices focus primarily on improv-
ing structural reliability of individual buildings through
implementing enhanced building codes and regulations
(Ellingwood, 2001; Ellingwood, Celik, & Kinali, 2007;
Shinozuka, Feng, Lee, & Naganuma, 2000). However,
resilience is usually recognized as a characteristic of the
entire community rather than individual infrastructure
elements (Bruneau et al., 2003; McAllister, 2013). The
emphasis on individual buildings may be inadequate
since the structures are part of a larger physical and
socioeconomic system. Recent research has considered
how community resilience goals can be de-aggregated
to better link appropriate retrofit strategies with indi-
vidual building performance (Lin, Wang, & Ellingwood,
2016). Community-based hazard mitigation policies ide-
ally should be developed from this or other such system-
wide perspectives.
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The building stock is comprised of diverse residential
and non-residential buildings that facilitate commerce
and the livelihood of the community. Additionally, the
building inventory in a community evolves over long
periods of time with varying levels of building codes
and enforcement. Compliance to a single standard is
not guaranteed and code levels within a community is
often heterogeneous. A building retrofit strategy should
account for heterogeneity of both the structural charac-
teristics (type, age, value, code level, etc.) and purpose
(e.g. residential, commercial, government). With respect
to this community-based perspective we consider a theo-
retical optimal allocation of a limited budget to retrofit a
heterogeneous building inventory under competing ob-
jectives given a scenario earthquake event.

Limited research has been conducted with respect to
optimizing retrofit plans for resilience of a large-scale
building inventory. Cimellaro, Reinhorn, and Bruneau
(2010) considered fourperformancemetrics relatingboth
to the immediate effects of a disaster and the indirect
effects that may be incurred during the recovery phases.
The metrics cited are content loss (CL), causalities di-
rectly relating to the event, economic loss due to business
interruption and relocation expenses, etc., and indirect
causalities resulting fromhospital dysfunctionor inacces-
sibility. In their case study, they considered six hospitals
across a region and four retrofit policies: ‘no action’,
retrofit to life safety level, retrofit to immediate occupancy
level, and rebuild. They examined the impacts to the loss
metrics under the assumption that each retrofit action is
applied to every hospital within the region. Jennings, van
de Lindt, and Peek (2015) developed a multi-objective
optimization model for retrofit strategy of wood frame
buildings to minimize cost, economic loss, number of
deaths, and recovery time in a community impacted by
an earthquake. The multiple objectives were aggregated
into a single objective using a weighting scheme and
the retrofit policy was determined by use of a genetic
algorithm. Using Los Angeles County, California as a
case study they considered a subset of 5000 buildings and
two building archetypes (two code levels for single-story
residential homes) for retrofit analysis. Decisions in both
studies are with respect to a relatively limited quantity of
buildings and range of building types.

The present work contributes to the literature
relating to retrofitmulti-objective optimization along the
robustness dimension of community resilience. While
increasing robustness (or alternatively, decreasing vul-
nerability) represents only onedimensionof the resilience
concept, it may have other significant impacts others as
well. In particular, financial losses to businesses and pop-
ulation dislocation have potentially long-term impacts
that affect a communities ability to recover (e.g. loss

of employment opportunities, loss of tax revenue, etc).
This contribution differs from the scope of the afore-
mentioned studies. First, the current work incorporates
significant heterogeneity in terms of the building stock.
The range of attributes include building purpose (e.g.
residential, commercial, industrial), structure type, code
status, location, and relevant socioeconomic characteris-
tics. Secondly, the decision problem is modeled as multi-
objective linear programming (LP) mathematical model.
Since LP problems are computationally efficient (solvable
in polynomial time), many points on and spanning the
entire Pareto front are identified. Finally, given thatmany
such solutions are determined, a detailed analysis of non-
dominated strategies and trade-offs is conducted.

The proposed multi-objective retrofit optimization
model allocates limited resources among all buildings in
a community with respect to two competing objectives:
direct economic loss and population dislocation. The
optimal solutions for each structural type and community
zone can provide vital information to decision makers
(government leaders and other stakeholders). In par-
ticular, the model developed here serves the purpose
of identifying and quantifying the vulnerabilities within
a community with respect to the aforementioned ob-
jectives. While community leaders do not usually have
direct ability to retrofit existing privately owned build-
ings, they can and do engage in a variety of strategies to
indirectly affect seismic retrofits. These strategies include
tax credits, permit fee reductions, low interest loans, new
ordinances, public education and awareness programs,
and grants (e.g. Burby, French, andNelson, 1998; FEMA,
1994; Oregon Seismic Safety Policy Advisory Commis-
sion (OSSPAC), 2013. The approach taken by commu-
nity leaders would likely be specific to the community.
In this work we only provide information to support
the decision of where such potential investment and/or
incentives should be focused.

In the remainder of the paper, Section 2 discusses the
mathematical formulation for the multi-objective opti-
mization problem and the corresponding solution ap-
proach. Section 3 illustrates the proposed model on the
well-developedvirtual city,Centerville (Ellingwood, 2016).
Concluding remarks and direction for future work are
included in Section 4.

2. Problem formulation

2.1. Modeling approach

For the purpose of this analysis a community is assumed
in which one or more distinct zones are present. A com-
munity zone is any defined geographic region that con-
tains structures of interest. Such zones might be based on
census tracts, topographically unique regions, or areas
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Table 1. Summary description of building inventory in Centerville.

Structural type Num of buildings Zones Code Appraised value

W1 6190 Z2,Z3,Z4,Z5,Z6 Pre-code W2 $1, 39, 426
W2 4000 Z1,Z2,Z3,Z4 Low-code W1 $2, 39, 016
W3 50 Z1 Moderate-code W1 $3, 18, 816
W4 3196 Z1,Z2,Z3 Pre-code W1 $2, 39, 016
W5 102 Z4,Z6 Low-code W2 $39, 18, 960
W6 1352 Z7 Low-code MH $61, 800
S1 45 Z8,Z9 Low-code S2L $51, 34, 500
RC1 32 Z8, Govt Low-code C1L $49, 48, 000
RM1 76 Z8,Z10 Pre-code RM1L $22, 05, 250
S2 6 Z9 Low-code S3 $77, 38, 750
S3 25 Z10 Pre-code S2L $73, 82, 000
S4 45 Z11 Moderate-code S2L $39, 3, 05, 000
RC2 1 HC Low-code C1M $17, 3, 52, 000
RM2 2 Fire1,Fire2 Low-code RM1L $11, 03, 400
RC3 4 MS1,MS2,HS Moderate-code C1L $90, 22, 000
RM3 4 ES1,ES2,ES3,ES4 Moderate-code RM1L $95, 21, 000

Figure 1. Centerville zoning map.

of relative homogeneity of structure types or purposes.
Examples of the latter case include regions of the commu-
nity that are industrial complexes, or commercial zones
dominated by consumer retail outlets, or high income
residential zones, etc. Furthermore, it is assumed that
information associated with the structure types, building
code level, occupancy type, and estimated value is avail-
able for every structure in each zone. Finally, note that the
specific functional relationship between retrofit strategies
and loss mitigation are specific to an earthquake hazard.

To define the optimization problem, let Z denote the
set of community zones, S denote the set of structure
types, and K denote the set of ordered code levels. Given
the current building codes for each structural type in
each zone, the model determines the quantities of each

building type to be retrofitted towhich code levels. Let the
decision variable xijk denote the total number of buildings
of structural type j ∈ S in zone i ∈ Z at code level
k ∈ K after retrofitting. If the parameter bijk reflects the
corresponding quantity of buildings prior to any mitiga-
tion efforts, the difference between xijk and bijk implies
the retrofit policy. Improving the building code shifts
its fragility curve so that higher magnitudes of damage
are less likely for the same event. While the decision
variable is logically integer, here it is modeled as a real-
valued variable. Rounding of non-integer solutions is
acceptable in some practical cases, in particular when
the scale of the solution values is large and the rela-
tive error due to rounding is small (Miller, 2011). Since
the expected building inventory is large (hundreds or
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thousands), the decision variable is not constrained to be
integer. Solutions selected for detailed evaluation will be
rounded to integer feasible retrofit actions. Finally, the
decision problem in this paper is scenario-based. That is,
the building inventory is subjected to a specific magni-
tude earthquake occurring at a specific location. Expected
performance (mean value) is commonly employed as a
metric to evaluate seismic loss (FEMA, 2012).

2.1.1. Objectives
Let lijk denote the expected direct economic loss due to
the scenario earthquake for buildings in zone i ∈ Z of
structure type j ∈ S which are at code level k ∈ K. The
expected loss is a function of the appraised value of the
structure as well as four specific components: structural
damage (SD), nonstructural drift-sensitive damage (ND),
nonstructural acceleration-sensitive damage (NA), and
CL. The economic loss function for a building in zone i ∈
Z of structure type j ∈ S at code level k ∈ K is adapted
from work completed by the Mid-America Earthquake
Center (Steelman, Song, & Hajjar, 2007),

lijk = Mijk

(
αSD
ijk μSD

ijk + αND
ijk μND

ijk + αNA
ijk μNA

ijk + αCL
ijk μCL

ijk

)
.

The parameter Mijk denotes the total assessed value of
the associated building. The values of αSD

ijk , α
ND
ijk , and αNA

ijk
reflect the fraction of value relating to potential SD, ND,
and NA, respectively. The value αCL

ijk reflects the value
ratio of the building contents to the structure’s assessed
value. The values for μSD

ijk , μND
ijk , μNA

ijk , and μCL
ijk reflect

the mean damage ratio associated with SD, ND, NA,
and CL. The mean damage ratio is defined as the ratio
of expected repair cost to the overall replacement cost.
Five distinct damage states are used to model the disaster
impact to structures: none, slight,moderate, extensive and
complete. The expected repair cost canbe estimatedby the
summation of probabilities of damage states multiplying
by their corresponding repair costs. The first of the two
competing objectives, to minimize direct economic loss,
is provided in Equation (1).

min
∑
i∈Z

∑
j∈S

∑
k∈K

lijkxijk (1)

The second objective relates to the number of households
in the community that are dislocated as a result of the
disaster. Let R ⊆ Z denote the set of residential zones
in the community. Expected dislocation quantities for
residential zone i ∈ R due to earthquake damage can be
estimated based onwork fromGirard andPeacock (1997)
and a model implemented in the Mid-America Earth-
quake Center Seismic Loss Assessment System (MAEviz)
as proposed in MAEviz (2008). MAEviz is the product

of collaboration between the Mid-America Earthquake
Center and the National Center for Supercomputing Ap-
plications and supported by the National Science Foun-
dation (Mid-America EarthquakeCenter, 2016). The tool
is designed in support of the consequence-based risk
managementmethodologywhich incorporates uncertainty
and societal impacts from a system-wide perspective into
decision making (Abrams, Elnashai, & Beavers, 2004).
Unfortunately, there is little documentation with respect
to original data used to develop the dislocation model.
Estimates on population dislocation obtained from pre-
dictive models will certainly have some level of error
which also may vary with respect to regional specifics
and hazard types.

The model is an ordinary least-squares (OLS) regres-
sion which predicts dislocation as function of SD,
non-structural damage, median household income, per-
centage of vacant housing, and percentage of the pop-
ulation that is black for each residential zone. Let di
denote the expected household dislocation for zone i ∈
R. The dislocation estimate, given a certain damage level,
is computed according to Equation (2) in which the pa-
rameter tij denotes the number of households per resi-
dential structure of type j in zone i; l−c

ijk denotes the direct
economic loss of a building excludingCL; the parameters,
β1, . . . ,β5 are regression coefficients; and qi, hi,mi, and
si, denote the zone characteristics: percentage of black
population, percentage of vacant housing units, median
household income in thousand dollars, and single-family
detached housing percentage, respectively. The percent-
age of dislocation is adjusted to 100% if it is greater than
100 and 0% if it is negative (MAEviz, 2008).

di =
∑
j∈S

∑
k∈K

tijbijk
( ∑

j∈S
∑

k∈K l−c
ijk xijk∑

j∈S
∑

k∈K Mijkxijk

)

×
(

β1 + β2qi + β3hi + β4mi + β5si
)

∀i ∈ R (2)

The first component in Equation (2),
∑

j∈S
∑

k∈K tijbijk,
is the total number of households in zone i ∈ R. The frac-
tion in Equation (2) is the percentage of total direct eco-
nomic loss (excluding CL) of the building
inventory in zone i to the total appraised value of pre-
disaster building inventory in the same zone. The regres-
sion coefficients, β1, . . . ,β5 provided in MAEviz (2008)
are .995,−.003,−.014, .011, and−.003, respectively. The
optimization model discussed in this paper uses the pa-
rameter estimates as provided in MAEViz. However, we
note that these parameters could be revised to reflect
regional differences or new information if available.
Equation (3) reflects the second optimization objective:
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Table 2. Summary of OLS parameters in Centerville.

Zone qi : % black mi : median income si : % single-family detached

Z1 1 $1, 00, 000 100
Z2 16 $85, 000 100
Z3 10 $60, 000 100
Z4 15 $45, 000 52
Z5 19 $30, 000 100
Z6 37 $15, 000 51
Z7 20 $10, 000 0

minimize the total population dislocation.

min
∑
i∈R

di (3)

The two objectives defined in Equations (1) and (3) here
reflect likely conflictingobjectives given limited resources.
The non-residential building inventory will likely have
higher appraised values than the residential buildings,
however retrofit decisions on such structures will have no
effect on dislocation. Given limited resources (e.g. a bud-
get level to implement or otherwise incentivize retrofits),
an allocation which emphasizes non-residential struc-
tures will likely improve the first objective at the ex-
pense of the second. This will be discussed extensively in
Section 3.

Both objectives presented implicitly reflect life safety
considerations. Equations (1) and (3) are functions of
distinct building damage states. The damage states none,
slight and moderate are directly tied to structural
performance levels of operational, immediate occupancy
and life safety, respectively, which are all above and be-
yond the minimum code requirement that ensures life
safety. Furthermore, these three damage states are asso-
ciated with less economic loss and dislocation, while the
extensive and complete damage states are life threatening
and, at the same time, result in more economic loss and
population dislocation. By simultaneously attempting to
minimizewith respect to direct loss and population dislo-
cation at the community level, the optimization strategy,
in its essence, strategically allocates limited resources to
bring as many buildings as possible up to the none, slight
andmoderate damage states through retrofit, which con-
sequently protect lives in the community as a whole.

2.1.2. Constraints
Van Zandt et al. (2009) and Zhang and Peacock (2009)
among others note that resilience is not homogeneous
among the populationwithin a community. In particular,
households that are at a lower socioeconomic level are of-
tenmore vulnerable to disasters and require a longer time
to recovery from disasters (Highfield, Peacock, & Van
Zandt, 2014). Such inequities are caused in part due to
the ‘trickle-down process’ in housing in the US in which

middle and upper income families buy newer homes,
whereas the poor are relegated to owning increasing older
and more vulnerable homes (Foley, 1980; Van Zandt),
2007. It is easy to see how a disaster may exacerbate
the social vulnerability disparity in a community. The
problem can become self-reinforcing. If is economically
prudent (at least in the near-term) to invest resilience
efforts in wealthier communities at the expense of the
poor, then the vulnerability gap between rich and poor
widens.When disaster strikes, the poor are hit harder and
it becomes even less desirable (from a purely economic
standpoint) to invest in the poorer communities and
the socio-economic and resilience inequities continue to
increase. Therefore, independent of economic incentives,
a set inequity constraints are imposed to mitigate this
cyclical phenomenon.The constraints ensure that the dif-
ferences in expected dislocation levels between residential
zones of different income levels are not increased.

Tomodel this social equitymotivated set of constraints,
letRh,Rm,Rl denote the sets of high-income, medium-
income, and low-income residential zones, respectively.
Note thatR = Rh∪Rm∪Rl . Let d̄i denote the expected
dislocation of zone i ∈ R under the assumption that
no residential building retrofits are implemented and let
D̄ denote a measure of the baseline disparity across the
different income zones for the community,

D̄ =
∣∣∣∣∣∣
∑
i∈Rh

d̄i −
∑
i∈Rm

d̄i

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∑
i∈Rh

d̄i −
∑
i∈Rl

d̄i

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
i∈Rm

d̄i −
∑
i∈Rl

d̄i

∣∣∣∣∣∣

The constraint on dislocation inequity ensures that the
retrofit actions to be undertaken do not increase this
overall level of disparity, i.e.

∣∣∣∣∣∣
∑
i∈Rh

di −
∑
i∈Rm

di

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∑
i∈Rh

di −
∑
i∈Rl

di

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
i∈Rm

di −
∑
i∈Rl

di

∣∣∣∣∣∣ ≤ D̄

Six inequalities are included in the model to guarantee
this social equity constraint is satisfied.When each of the
six linear constraints in Equations (4)–(6) are satisfied the
retrofit decisions will not increase the baseline disparity
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level.

−1
2
D̄ ≤

∑
i∈Rh

di −
∑
i∈Rm

di ≤ 1
2
D̄ (4)

−1
2
D̄ ≤

∑
i∈Rh

di −
∑
i∈Rl

di ≤ 1
2
D̄ (5)

−1
2
D̄ ≤

∑
i∈Rm

di −
∑
i∈Rl

di ≤ 1
2
D̄ (6)

Given that resources to perform (or incentivize) retrofit
actions are limited, let B denote a total budget available
for retrofit interventions. As a simplification, the cost
of a retrofit is assumed to be reflected in the assessed
value of the building. That is, if a given structure type j
in zone i at code level k has an assessed value ofMijk and
is retrofit to a higher level, k∗ > k, then the cost of the
corresponding retrofit is assumed to be the difference in
the values,Mijk −Mijk∗ . Therefore, the budget constraint
is modeled as shown in Equation (7).

∑
i∈Z

∑
j∈S

∑
k∈K

Mijk(xijk − bijk) ≤ B (7)

In addition to the external constraints regarding social
equity and budget, there are logical constraints that must
be modeled. Namely, the intervention is specifically tied
to improving code levels of existing buildings. Hence, the
only alterable parameter in a community is the building
code. Therefore, the total number of buildings in each
zone of a given typemust be the same before and after any
retrofit policy (see Equation (8)). Likewise, every retrofit
action can only improve the code level, which implies if
for a given zone i and structure type j, if the buildings are
originally at a code level k∗, then xijk = 0 for all k < k∗
(see Equation (9)). Lastly, each decision variable can only
take on only non-negative values as shown in Equation
(10). ∑

k∈K
xijk =

∑
k∈K

bijk ∀i ∈ Z , ∀j ∈ S (8)

xijk = 0 ∀i ∈ Z , ∀j ∈ S , ∀k ∈ {c ∈ K : c < k∗

where bijk∗ > 0} (9)

xijk ≥ 0 ∀i ∈ Z , ∀j ∈ S , ∀k ∈ K (10)
The mathematical model described by minimizing
Equations (1) and (3) subject to the constraints described
in Equations (4)–(10) is a multi-objective linear pro-
gram to allocate limited resources for building retrofit
to mitigate the impacts of an earthquake on a commu-
nity. Since in the proposed mitigation-based resource al-
location model for retrofit (MRA), the two objectives

are conflicting, multiple Pareto optimal solutions will be
identified.

2.2. Solution approach

The MRA model is a multi-objective optimization prob-
lem (MOP) and the set of optimal solutions is called the
Pareto-optimal front. Each Pareto optimal solution is a
non-dominated solution. A non-dominated solution is
one in which no other solution exists which is supe-
rior to it with respect to all objectives. It is impossible
to improve a non-dominated solution with respect to
one objective without diminishing another. As such, the
Pareto front can be thought of as a multi-dimensional
trade-off surface. Many approaches have been developed
to solveMOPs. Classical approaches convert themultiple
objectives into some type of single objective. Examples in-
clude weighted sum, weighted Tchebycheff metric meth-
ods (Miettinen, 1999), Benson’s method (Benson, 1978;
Ehrgott, 2005), the value function method (Rosenthal,
1984), and the ε-constraint method (Haimes, Ladson, &
Wismer, 1971; Laumanns,Thiele,&Zitzler, 2006;Mavro-
tas, 2009).

Theweighted summethod, or scalarization technique,
is one of the commonand convenient classical techniques
(e.g. Jennings et al., 2015). This method integrates a set
of objectives into a single objective function by multiply-
ing each objective by pre-defined weights. The weights
may correspond to the decision makers preference re-
garding the importance of the conflicting objectives. Of-
tentimes, the sum of all weights is set equal to 1 and
the resulting convex sum is optimized. To estimate the
Pareto front, an iterative approach is used in which the
weights are changed systematically and the problem is re-
solved many times (Koski & Silvennoinen, 1987; Marler
& Arora, 2010; Zadeh, 1963). Note that designing an
iterative weighting scheme is not trivial: (i) a uniform
distributed set of weights does not necessarily guarantee
a uniform distribution of solutions along the Pareto front
and (ii) different weighting schemes can easily obtain the
same optimal solutions. One drawback of aggregating
multiple objectives by convex summation is that estimat-
ing the Pareto front is impossible if the feasible region in
objective space is non-convex.

In the ε-constraint method, the MOP is reformulated
by keeping one objective function fm as the objective and
modeling the others f1, . . . , fm−1, fm+1, . . . , fn as
constraints with bounds ε1, . . . , εm−1, εm+1, . . . , εn. The
MOP is iteratively solved for a different ε values. To
evaluate the entire span of Pareto optimal solutions, it is
necessary to determineminimum andmaximumbounds
for every objective function used as a constraint. This
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Table 3. Summary of population dislocation in Centerville.

Zone Income level % Loss Households Dislocated % Dislocated

Z1 High 9.29 4246 820 19.3
Z2 Medium 8.38 2267 368 16.2
Z3 Medium 7.80 800 103 12.9
Z4 Medium 12.42 4767 883 18.5
Z5 Low 12.05 1856 296 15.9
Z6 Low 10.81 4396 549 12.5
Z7 Low 12.43 1352 185 13.7

Figure 2. Pareto front: direct economic loss and dislocation (B = $52M).

method can be used to estimate both convex and non-
convex Pareto surfaces.

Pure MOP techniques also exist. Evolutionary
algorithms are well suited to address MOPs since, in
their native form, a population of solutions are man-
aged throughout theprocedure enabling abroadheuristic
search for the Pareto front in a single implementation
(Deb, 2001). The non-dominated sorting genetic algo-
rithm II (Deb,Agrawal, Pratap,&Meyarivan, 2000, 2002)
is among the most popular evolutionary techniques for
MOPs andwork in this field is expanding (e.g. Laumanns,
Thiele, Deb, & Zitzler, 2002; Zhang & Li, 2007; Zitzler &
Künzli, 2004). These approaches are primarily designed
for complex problems which cannot be solved efficiently.
Solutions determined by modern heuristics do not pro-
vide a guarantee of Pareto optimality, are not guaranteed
to span the entire trade-off surface, and depending on the
problem type, may require significant computation time
to converge.

By careful design, the MRAmodel is a multi-objective
linear programwhich canbe solved exactly and iteratively
using a classical approach without significant computa-

tional burden. As such, heuristic methods do not pro-
vide an advantage. The ε-constraint method is employed
and circumvents several of the aforementioned issues,
i.e. (i) the Pareto front does not have to be convex, (ii)
since minimum and maximum values for both objective
functions are available, the extremities of the front can
be identified, and (iii) since the model is linear, exact
solutions canbedetermined efficiently. To implement the
ε-constraint approach, the objective function inEquation
(3) is converted into the associated constraint,

∑
i∈I

∑
j∈S

∑
k∈K

di ≤ ε (11)

where ε ∈ [εmin, εmax] and the values for εmin and εmax
are determined to be the minimum possible dislocation
(occurring if an ideal budget were available to retrofit
every residential building) and the baseline dislocation
(occurring if no retrofit actions are taken), respectively.
The re-formulated problem with the single objective (1)
and constraints (4) – (11) is solved many times for differ-
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Table 4. Direct retrofit effects.

Dislocation Direct loss
Policy % Decrease % Decrease

I 21.9 9.4
II 14.7 14.7
III 2.4 17.1

ent values of ε ∈ [εmin, εmax]. The resulting solutions are
Pareto optimal.

3. Case study: Centerville mitigation analysis

3.1. Baseline scenario

Inorder to illustrate theproposedmethodology, theMRA
model is applied to the well-developed virtual city,
Centerville, which is designed collaboratively by a team
of engineering experts, economists, and social scientists
(Ellingwood, 2016). Centerville is a city with a popula-
tion of approximately 20,000 households with a diverse
building inventory comprised of over 15,000 structures.
While the residents of the virtual city have a median
income mirroring that of the US, there are residential
areas within the city of high-income and those with low-
income. The residential structures include single fam-
ily units, apartment buildings, and mobile home units.
Figure 1 depicts the layout of Centerville. There are 7
residential zones (Z1–Z7), 2 commercial zones (Z8, Z9)
and 2 industrial zones (Z10, Z11), 1 hospital (HC), 2
fire stations (Fire1, Fire2) and 7 schools (ES1–ES4, MS1,
MS2, HS). There are 16 structural types (W1–W6: wood;
S1–S4: steel braced frame; RC1–RC3: concrete; RM1–
RM3: reinforcedmasonry). Eachofwhichhas an assigned
code level based on codes defined in HAZUS (1997). The
number of buildings of each structure type, the associated
code levels and zones, and appraised values are reported
in Table 1. The OLS values for the independent vari-
ables associated with each residential zone are listed in
Table 2. Note that the percentage of vacant units for each
zone is equal to 0% and not included in the table.

The scenario event simulated is an earthquake ofmag-
nitude of 7.8 with an epicenter distance 35 kilometers
southwest from the center of Centerville. The detailed
calculation of the direct economic loss and SD loss can
be found in Lin and Wang (2016). The total baseline
direct economic loss (without retrofit intervention) is
$856M.More than half of the loss comes from damage to
commercial or industrial buildings ($434M) even though
such structures represent less than 2% of the building
stock. In particular, the highest zone direct economic
loss of $233M occurs in Z11. The direct economic loss of
Centerville is mainly driven by non-residential buildings.

The number of households dislocated by zone
under the same scenario and without retrofit is reported
in Table 3. The table reports the zone, associated in-
come level, percent of economic loss (structural and non-
structural loss), number of households residing in the
zone, expecteddislocationquantities, anddislocation rate.
The highest rates of dislocation occur in the highest in-
come zone Z1 and in the medium income zone Z4. After
discussing this with researchers involved with the de-
velopment of MAEviz, it was determined that the dis-
location model does not distinguish between voluntary
and involuntary dislocation and such behavior would be
expected. The baseline number for total expected house-
hold dislocation is 3204. The expected dislocation values
for high, medium, and low-income levels are 820, 1354,
and 1029, respectively. Hence, the absolute difference
of dislocated households among different income levels
after mitigation should be less than or equal to 1068.

3.2. Retrofit interventions

The costs associated with a retrofit implementation is
assumed to be a function of the appraised value of the
structure. For purposes of this study, a relatively simple
relationship is employed. An improvement from code
k = 1 (pre-code) to k = 2 (low-code), incurs a cost of
1% of the appraised value. Similarly, improvements from
k = 2 to k = 3 (moderate code) and improvements
from k = 3 to k = 4 (high-code) cost 5 and 8% of the
pre-code appraised value, respectively. Three different
budget levels are investigated: 15, 30, and 60% of the ideal
budget,where the ideal budget is determinedbased on the
necessary funds to retrofit every structure in Centerville
to the highest code level possible.

Figure 2 depicts the Pareto front in terms of direct
economic loss and dislocation for the most restrictive
budget of $52M. Over 600 solutions on the Pareto front
are determined using the ε-constraint method. The solu-
tions are found using Gurobi 6.0 as the LP solver and
the computing time to solve each problem is around
.001 s. The gray region indicates the region of dominated
solutions, which are feasible but not optimal. The white
region is the infeasible space, in which no solutions can
satisfy the constraints (e.g. budget limitations). The tri-
angles in Figure 2 are three solutions selected as special
intervention policies for further analysis. The effect of
each of the three policies are summarized in Table 4 and
the solution details are reported in Table 5.

Policy I is an extreme point in the Pareto front that
allocates all available resource to reduce the number of
households dislocated.The correspondingnumberof dis-
located households drops from 3204 to 2504 (a 21.8%
decrease) and the direct economic loss decreases by 9.2%.
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Table 5. Detail of the selected policies.

Building class Zone Policy I Policy II Policy III

Residential Z1 1072 W2: 2→ 3 1513 W4: 1→ 22196 W4: 1→ 2
Z2 767 W1: 1→ 3

Z4 2567 W1: 1→ 3 2567 W1: 1→ 3 25 W5: 2→ 325 W5: 2→ 3 25 W5: 2→ 3
Z6 59 W5: 2→ 3 17 W5: 2→ 3

Commercial
Z8 16 S1: 2→ 3 16 S1: 2→ 3

11 RC1: 2→ 3 11 RC1: 2→ 3
30 RM1: 1→ 3

Z9

29 S1: 2→ 3 29 S1: 2→ 3
13 RC1: 2→ 3 13 RC1: 2→ 4
46 RM1: 1→ 3 46 RM1: 1→ 3
6 S2: 2→ 4 6 S2: 2→ 4

Industrial Z10 3 S3: 1→ 3 25 S3: 1→ 3
Z11 7 S4: 3→ 4

Other Fire1 1 RM2: 2→ 3 1 RM2: 2→ 3
Fire2 1 RM2: 2→ 3 1 RM2: 2→ 3
Govt 8 RC1: 2→ 3 8 RC1: 2→ 4

Figure 3. Investment decision: residential vs. non-residential (B = $52M).

Table 5 reveals that Policy I allocates all funds to zones Z1,
Z2, Z4, and Z6 – each of which has the highest expected
baseline dislocation quantities (as shown in Table 3).
The policy however does not allocate resources simply
based on the quantity of expected dislocation by zone.
The allocation mix is non-trivial. For example, only 54%
of building type W2 in zone Z1 are selected for retrofit
(1024 of 2000), whereas 76% of type W5 in zone Z6 are
chosen (59out of 77). Theother extreme solution is Policy
III, in which the number of households dislocated only
drops by 2.4% but the direct loss is decreased by 17.1% (a
savings of approximately $145M over the baseline). This
policy emphasizes the economic aspect by assigningmost

resources to non-residential zones. For instance, the 7
buildings selected in Z11 account for 26% of the available
budget. Policy II is a balanced approach that allocates
resources to both residential and non-residential zones.

The shift in intervention strategy present in the three
selected policies is representative of the overall pattern
of shifting resources from residential to non-residential
structure across the Pareto front. This is visualized in
Figure 3. The vertical axis denotes the percentage of bud-
get investment and the horizontal axis reflects the spec-
trum of Pareto solutions ranging from the extremes of
Policy I focusing on dislocation to the extremes of Pol-
icy III emphasizing economic value. The two curves are
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Figure 4. Investment decision: high, medium, low income residential zones (B = $52M).

Figure 5. Pareto front: direct economic loss and dislocation (B = $52M, $104M, $208M).

associated with budget allocation to either residential or
non-residential zones.

Figure 4 provides a break out of the residential in-
vestment shown in Figure 3 by residential zone income
levels. The dashed line depicts investments in the high-
income zone (Z1), the dotted line reflects investments in
the medium-income zones (Z2–Z4), and the solid line

represents investments in the low-income zones (Z5–
Z7). The MRAmodel consistently allocates more budget
to the medium-income zones. Comparing the slope of
the lines in the figure helps to establish budget priorities
regarding optimal trade-offs. For instance, if a decision
maker is considering shifting a proportion of resources to
mitigate direct economic loss as opposed to an extreme
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Table 6. Pareto optimal extreme solution objectives.

Budget Minimum Maximum Range

$52M Dislocation 2504 3126 622
$ Loss (millions) 711 777 66

$104M Dislocation 2026 3083 1057
$ Loss (millions) 609 715 106

$208M Dislocation 1467 2071 604
$ Loss (millions) 470 636 166

policy that minimizes only dislocation (e.g. Policy I), the
dashed line has the most negative slope indicating that
funds should be diverted from high-income zones first,
whereas funds associated with medium-income zones
should be untouched (note the initial plateau on the
dotted curve).

If the available retrofit budget were increased, the in-
feasible region in the objective space would shrink. The
higher budget levels of 30 and 60% of the ideal would
shift the Pareto front toward lower dislocation and eco-
nomic loss values. The corresponding curves are shown
in Figure 5. The solid line, dashed line, and dash-dot
line are the Pareto fronts associated with the restrictive
budget of $52M, the medium budget of $104M, and
high level budget of $208M, respectively.With increasing
budget levels more options are available. However, it
is important to note that increasing budget levels do
not imply a wider range of non-dominated solutions.
Consider for example the far right point on the $208M
Pareto front: approximately 2070 dislocated households
and $470M in direct loss. All solutions at this budget level
with more than 2070 dislocated households are domi-
nated solutions. That is, no trade-off exists between the
objectives that can reduce the direct loss value further.
However, considering a solution with 2070 dislocations
along the $104M budget-level Pareto front, there are
many possible trade-offs that increase dislocation and
reduce direct loss.

Comparing results across budget levels can further
improve decision making. For example, the minimum
population dislocation with themost restrictive budget is
2504 households. For an increase of an additional $52M,
this can be reduced by 478 expected dislocations. This
more costly extreme solution also comeswith a reduction
in direct economic loss of $61.6M.

Additionally, the various Pareto fronts shown in
Figure 5 have distinctive shapes which represent interest-
ing distinctions in the possible trade-offs. The ranges for
each objective function also change base on budget level.
Table 6 reports theminimum andmaximumPareto opti-
mal dislocation anddirect loss values associatedwith each
budget. At the $52M budget level, a decision maker has
$66M of potential loss to consider against the possibility

of having 622 households dislocate. That is, the extreme
trade-off implies a ratio of $1,06,000 in loss per potential
dislocated household. At the highest budget level, this
shifts to a differential of only 604 dislocations, but $166M
of potential loss, giving a ratio of nearly $2,75,000 per
potential household.

4. Conclusions

Community leaders, emergency planners, and local gov-
ernment representatives are faced with difficult decision
problems and conflicting objectives when dealing with
community resilience. The multiple objective optimiza-
tion model developed in this study is meant as a decision
support tool for such stakeholders as they consider in-
vestments to impact community vulnerability. Using the
virtual communityCenterville, themodel is implemented
and a sampling of the available trade-off analysis is pre-
sented. In particular, given the competing objectives of
minimizing population dislocation and minimizing di-
rect economic loss to the building stock, decisions regard-
ing strategies to allocate funds for retrofit are complex in
the presence of heterogeneous structures and residents.
Allocation decisions regarding code level improvements
to residential or non-residential structures is only one
level of complexity. More granularity is desirable. The
tool proposed in this study efficiently allows for a de-
tailed analysis of the trade-offs involved regarding de-
cisions made at the zone, structure type, and building
code level of detail. The solution approach can handle
large-scale communities with numerous building types.
In the present case study, optimal decisions regarding the
15,000 structures associated with 16 structure types and 4
code levels require about onemillisecond of computation
time on a desktop computer. As such, we expect that
much larger communities with more specific structure
and/or occupancy types can evaluated in reasonable time.

The efficiency of the tool allows for exploration of a va-
riety of circumstances such as varying budget levels. This
exploration can help frame the decision problem. Addi-
tionally, accurate representation of various Pareto sur-
faces can improve the quality of decision making. Other
exploration opportunities are also immediately possible.
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For instance, while the social equity constraint mod-
eled in Equations (4)–(6) is intended to limit the ex-
pected increase in social vulnerability between various
socioeconomic levels, it is a simple matter to adjust these
constraints to find solutions that decrease the existing
inequities.

Anymulti-objective optimizationmodel, including the
MRA, is subject to the quality of the input. The OLS dis-
location model presently employed could be improved.
While the dislocation model is used in the well-known
MAEViz tool, there is little documentation with respect
to the assumptions it is based on. There are other issues
that conceptually can be improved as well, i.e. the present
model has to rely on truncation if the predictive displace-
ment percentages exceed 100% (or fall below 0%). In
future work, mathematical approaches with potentially
better characteristics will be examined. For example, the
logistic regression model developed in Lin (2009) is one
possibility. Furthermore, the immediate economic loss
due to damage sustained in a disaster is only one com-
ponent of the true economic impact to a community.
If buildings and facilities are damaged, then industrial
production may be impacted; as households dislocate,
the local commercial sector may decline along with sale
and property tax revenue, etc. Ideally, such cascading
economic factors can be integrated into a newmitigation
strategy optimization model.

Finally, an astute reader may have noticed that none
of the retrofit policies analyzed in Table 5 involve any
school or hospital in Centerville. While with respect to
the model assumptions this is fine, in future research a
broader collection of objective functions encompassing
more potential social and economic values of a commu-
nity will be implemented. Protection of emergency facili-
ties and school children is obviously important.Modeling
the appropriate and related performance objectives and
their functional relationships with various intervention
strategies however is not trivial. Besides buildings, the
performance of utility and transportation networks play
critical roles in community resilience, which also effect
on economic loss and other societal metrics. Applied
research is necessary to continue developing more re-
alistic and broadly applicable decision algorithms to help
inform and support a wide array of community stake-
holders.
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