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ABSTRACT
This paper presents a novel resilience-based framework to optimise the scheduling of the post-disaster 
recovery actions for road-bridge transportation networks. The methodology systematically incorporates 
network topology, redundancy, traffic flow, damage level and available resources into the stochastic 
processes of network post-hazard recovery strategy optimisation. Two metrics are proposed for measuring 
rapidity and efficiency of the network recovery: total recovery time (TRT) and the skew of the recovery 
trajectory (SRT). The TRT is the time required for the network to be restored to its pre-hazard functionality 
level, while the SRT is a metric defined for the first time in this study to capture the characteristics of the 
recovery trajectory that relates to the efficiency of those restoration strategies considered. Based on this 
two-dimensional metric, a restoration scheduling method is proposed for optimal post-disaster recovery 
planning for bridge-road transportation networks. To illustrate the proposed methodology, a genetic 
algorithm is used to solve the restoration schedule optimisation problem for a hypothetical bridge network 
with 30 nodes and 37 bridges subjected to a scenario seismic event. A sensitivity study using this network 
illustrates the impact of the resourcefulness of a community and its time-dependent commitment of 
resources on the network recovery time and trajectory.

1.  Introduction and Background

Transportation networks play a vital role in ensuring the eco-
nomic and social well-being of a community and the condition 
of such networks following the occurrence of an extreme hazard 
(e.g. earthquake, extreme wind storms, flood, terrorism, etc.) has 
a significant impact on the recovery of the community. Highway 
bridges are vulnerable components in road transportation sys-
tem, and robustness and recovery of the transportation network 
as a whole highly depends on their performance. Large-scale 
hazards can damage many bridges in a transportation system 
simultaneously, and the loss that results from this damage can 
be classified into two categories: initial direct loss caused by 
structural damage and indirect loss caused by downtime of the 
network before its full recovery. The initial loss is determined by 
the vulnerability of the network to the hazard event (Bruneau 
et al., 2003; Chang & Shinozuka, 2004). The indirect loss due 
to downtime, which often is long-term and equally significant, 
largely depends on the overall recovery time and trajectory of the 
network. This paper investigates bridge-road transportation net-
work restoration schedules that minimise the recovery time and 
optimise the recovery trajectory of the network as a whole; such 
optimal schedules ultimately lead to reduced indirect economic 
losses resulting from the downtime of damaged road systems.

A well-accepted definition of infrastructure system resilience is 
presented in Bruneau et al. (2003), as illustrated in Figure 1, where 

resilience is defined with four dimensions: robustness (ability to 
withstand extreme events and deliver a certain level of service after 
events), rapidity (speed of recovering from a disaster), redundancy 
(substitutable components within the system) and resourceful-
ness (availability of resources to respond to a disaster). Several 
approaches to quantifying resilience can be found in Bruneau et al. 
(2003), Bocchini, Frangopol, Ummenhofer, & Zinke (2013), Chang 
and Shinozuka (2004), Cimellaro, Reinhorn, and Bruneau (2006, 
2010a, 2010b), and Zobel (2011). Numerous studies have been 
focused on the post-hazard restoration of physical networks. For 
example, Chang and Nojima (2001) utilised network coverage and 
transport accessibility to quantify the post-disaster performance 
of a transportation network and applied these concepts to a rail 
and highway transportation system in Kobe, Japan.

Shinozuka et al. (2003) discussed the restoration curve in 
terms of robustness and rapidity in which the recovery indicator 
is associated with the service level (e.g. power supply for electric 
networks or water supply for water systems) and the rapidity is 
measured by the average recovery rate, expressed in percentage 
recovery/time. Wang, Sarker, Mann, and Triantaphyllou (2004) 
constructed a depot location model to minimise the total inter-
cell transportation cost for the electric power restoration process. 
Çağnan, Davidson, and Guikema (2006) compared the alter-
native restoration strategies for the electric power transmission 
systems with respect to the expected duration of power outages 
in Los Angeles using a discrete-event simulation model.
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critical nodes (e.g. healthcare facilities and operations centres) 
in the network.

The network performance metrics used in post-disaster recov-
ery in the studies as reviewed above include rapidity (recovery 
time), monetary loss (user cost), service performance (travel 
time and travel distance), and area under the recovery curve; 
however, no methods could be located which focus on the shape 
of the recovery trajectory. The shape, however, provides addi-
tional information and a novel perspective on the efficiency of 
the network restoration process. For example, as shown in Figure 
2, the four recovery trajectories share the same rapidity, that is, 
recovery time. Assuming equal levels of community investment, 
curve 1 represents the best recovery strategy and curve 4 is the 
worst among all the alternatives.

Furthermore, recovery curve 2 is better than curve 3 due 
to its more efficient early-stage recovery which reduces early 
losses caused by network service disruption. This efficiency in 
early phase of recovery could also facilitate the recovery of other 
infrastructure systems whose service capabilities highly depend 
on the functionality of transportation network (e.g. emergency 
response and rescue immediately following hazard event). To the 
best of our knowledge, the existing network recovery scheduling 
frameworks are generally not capable of distinguishing recov-
ery trajectories 2 and 3. While Bocchini and Frangopol (2012) 
proposed to use the time required for network to recovery to a 
pre-defined level of functionality as an additional measure to 
evaluate the efficiency of the recovery process that proposal still 
leaves curves 2 and 3 indistinguishable if the prescribed function 
level is close to the intersection point of the two curves.

In this paper, firstly, a novel metric for evaluating the relative 
efficiency of alternative network recovery strategies is intro-
duced. Subsequently, a restoration scheduling methodology 
for network post-disaster recovery that minimises the overall 
network recovery time and optimises the recovery trajectory is 
developed, which ultimately will reduce economic losses due to 
network service disruption. In the proposed method, the number 
of simultaneous repair interventions (actions) is constrained by 
the available resources in the community throughout the recov-
ery period. In addition, this model dynamically updates the dam-
age level of each individual bridge and the corresponding overall 
performance of the network during the recovery process until 
all the damaged bridges are restored.

The restoration scheduling model is stochastic in nature 
because the uncertainties associated with parameters that are 
critical for network recovery, e.g. the restoration intervention 
duration for each damaged bridge and traffic flow on roads and 
bridges, are propagated throughout the analysis. The optimi-
sation problem in this study is formulated as a version of the 
dynamic job shop problem, which is known to be NP-hard 
(Gonçalves, de Magalhães Mendes, & Resende, 2005). A genetic 
algorithm (GA) is used to search for near-optimal solutions in 
an efficient manner. Monte Carlo Simulation (MCS) is employed 
to sample the stochastic parameters to quantify the uncertainties 
associated with network recovery process.

The remainder of the paper is organised as follows. Section 
2 introduces the resilience-based transportation network per-
formance metric used in this study. In Section 3, we define the 
metrics for measuring the efficiency of the network recovery 
process and then develop the mathematical formulation for 

The study by Xu et al. (2007) of an electric system was aimed 
at minimising the area above the restoration curve; this area, 
shown in Figure 1 as the light-shaded triangular area, is named 
the resilience triangle in Bruneau et al. (2003). Miles and Chang 
(2006) proposed one of the first comprehensive concept models 
of post-disaster community recovery using an object-oriented 
design technique, in which the variables and relationships 
between different sectors were clearly defined. Their model 
provides a common basis for developing computer models of 
socio-economic recovery from disasters and its flexibility allows 
for the incorporation of various indicators and algorithms within 
the framework and was implemented successfully in a prototype 
computer simulation with a graphical user interface. Karlaftis, 
Kepaptsoglou, and Lambropoulos (2007) developed a three-stage 
approach to allocate available resources to the restoration of a 
transportation system in terms of the contribution of each bridge 
to the operation of the network.

Frangopol and Bocchini (2011) optimised the post-disaster 
restoration schedule for a transportation system with respect 
to total cost and resilience, the definition of which is the area 
below the recovery trajectory (the dark-shaded trapezoid shown 
in Figure 1) using total travel time and total travel distance as 
the network performance metrics. In a later study (Bocchini & 
Frangopol, 2012), the authors added the time required to recover 
a certain level of network functionality (less than complete recov-
ery) as another objective in optimising the network restoration 
schedule. More recently, Karamlou and Bocchini (2014) pro-
posed a multiobjective optimisation model to maximise the 
network resilience and minimise the required time to connect 

Figure 1. Illustration of resilience concept.

Figure 2. Recovery trajectories.
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resilience-based network recovery optimisation. In Section 
4, a hypothetical bridge network comprised of 30 nodes and 
37 bridges is generated to illustrate the implementation of the 
developed methodology in a context of a considered scenario 
earthquake. A sensitivity study using this network illustrates 
the impact of the resourcefulness of a community and time-de-
pendent commitment of resources on the network recovery time 
and trajectory. Conclusions and future work are summarised in 
Section 5.

2.  Resilience-based performance metric of road 
networks

Many performance metrics for transportation networks, such 
as maximum traffic flow capacity and minimum travel time or 
distance, can be used to measure network performance under 
normal operational conditions but are not directly applicable 
to the analysis of post-disaster recovery following severe nat-
ural hazards. Immediately following an extreme event, people 
typically are more concerned about whether they are able to 
travel from one place to another than the distance or the speed 
at which they can travel. Connectivity reliability, as a network 
performance measure, could address the above-mentioned defi-
ciencies but does not reflect the different levels of importance in 
the roles that different roads and bridges play in the functionality 
of the network.

Hence, connectivity reliability does not fully support resil-
ience-based decisions on engineering interventions that are 
directly implemented at the network component (roads and 
bridges) level. A network performance metric recently intro-
duced by Zhang and Wang (2016) and formulated in the context 
of community resilience to natural hazards, uses the weighted 
average number of reliable independent pathways between all 
origin-destination (O-D) pairs, denoted WIPW, as a perfor-
mance measure of transportation networks. In this study, we 
adopt the WIPW as the network performance metric (the vertical 
coordinate of the resilience curves illustrated in Figures 1 and 2) 
for optimising post-event network recovery scheduling.

Let G = (V ,A) denote the road network, where V = {1, 2 … 
n} is the set of nodes, which is partitioned into a set E = {1, 2 
… e} of emergency nodes (including critical emergency 
response facilities, e.g. fire stations and hospitals) and a set 
N = {e + 1, e + 2… n} of normal nodes (representing major 
destinations, e.g. residential areas, economic hubs, and major 
road intersections); and A = {1, 2 … m} is the set of arcs (links) 
that represent roads without or with a maximum of one bridge.1 
The network performance metric, WIPW, is written as (Zhang 
& Wang, 2016):

 

where K(i,j) is the total number of independent pathways2 (IPW) 
between node i ∊ V and node j ≠ i ∊ V; Pk

(

i, j
)

 represents the 
kth IPW between node i ∊ V and node j ≠  i ∊ V, and Rk

(

i, j
)

 
represents the reliability (probability of surviving a hazard) of 
Pk

(

i, j
)

. The weighting factor wk(i, j) is applied to Pk

(

i, j
)

, which 
is a function of the average daily traffic (ADT, denoted as Fij in 
the subsequent sections) and the length (denoted as Lij in the 
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subsequent sections) of each arc that is a portion of the Pk

(

i, j
)

; 
weighting factor wi is applied to node i ∊ V, which is a function of 
the distance from node i to its nearest emergency response facil-
ities represented by emergency node i ∊ E. The detailed formu-
lation of each item in Equation (1) and the complete algorithm 
to evaluate WIPW can be found in Zhang and Wang (2016).

This resilience-based network performance measure encom-
passes the following four important characteristics of network 
resilience: (1) the network redundancy, encapsulated in the 
term K(i,j) in Equation (1), reflects the number of alternative 
or back-up independent paths between all possible O-D pairs. 
(2) the network component reliability, encapsulated in the term 
Rk

(

i, j
)

, relates to the probability of bridges (and roads) being 
functional (fully or partially) after a given hazard event. For 
example, bridges with a higher reliability are likely to have less 
damage and require less time and resources to recover following 
a disaster; such attributes should be considered in effective net-
work risk mitigation and recovery strategies. (3) the importance 
levels of network components, encapsulated in the term wk

(

i, j
)

 
(as a function of arc ADT and length) in Equation (1), reflect the 
different service levels of bridges and roads in terms of the roles 
that they play in supporting the overall network functionality. 
The ADT describes the historical traffic flow on each roadway. It 
is more accurate as a roadway importance measure than the traf-
fic pattern predicted by existing traffic assignment models (Davis, 
1997) because the user pattern of the road system is affected by 
many factors, including distribution of origins and destinations, 
distance and travel time of paths, congestion, facilities along the 
path, user preferences, etc. (4) the role of the transportation net-
work in post-disaster emergency response is considered in the 
performance metric, through the term wi in Equation (1), by 
applying heavier weights on roads and bridges that are topologi-
cally in close proximity to emergency facilities, as they likely play 
important roles in community emergency response and rescue 
immediately following the hazard event.

The WIPW was originally introduced as a network perfor-
mance metric for pre-event risk mitigation decisions. In adapt-
ing the WIPW in this study for network post-disaster recovery 
scheduling optimisation, its formulation in Equation (1) need to 
be modified. Specifically, the pre-event reliability of IPW, Rk

(

i, j
)

, 
must be replaced by its post-event serviceability. The post-event 
service level of an arc (a road segment or a bridge) is a function 
of its damage level denoted as qa for all a ∈ A, which can be 
measured on a 0 to 4 scale, corresponding to the damage lev-
els of none, slight, moderate, extensive and complete (HAZUS 
MH-2.2, 2015). The service level of each arc a ∊  A is ideally 
set (1 − qa

4
) (Bocchini & Frangopol, 2012); i.e. if an arc is fully 

damaged (‘complete’ damage state), qa is set to be 4, and the 
corresponding service level is 0; otherwise, the arc service level 
ranges from 0 to 1. Subsequently, the service level of the IPW 
Pk

(

i, j
)

 is approximated as the product of the service levels of all 
arcs a ∈ Pk

(

i, j
)

. Accordingly, the WIPW for a damaged trans-
portation network can be computed as:

 

(2)

WIPW(G) =(G) =

n
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recovery. Therefore, a second metric is introduced for evaluating 
the effectiveness of network restoration schedules – the skew of 
the recovery trajectory (SRT), defined as the centroid of the area 
below the recovery trajectory (from t

0
 to tk) with respect to t = t

0
. 

The SRT associated with schedules 1 and 2 are marked in Figure 
3 as s1 and s2, respectively. If the recovery were instantaneous, 
s would be equal to 0. This two-dimensional recovery metric, 
i.e. TRT and SRT, defines the objective functions in finding the 
optimal scheduling for the network recovery.

Although the scheduling framework introduced in this study 
applies to any arc within the network, i.e. both bridges and road 
segments, the subsequent discussion is focused on bridges as they 
are the most vulnerable arcs in the transportation network. Let 
B = {1, 2 … m} denote the set of network bridges. The recovery 
scheduling problem then is to determine an optimal schedule 
x = {x

1
, x

2
,… , xd} for the repair of all d ≤ m damaged bridges, 

where x is the time at which restoration is initiated for bridges 
b = 1,… , d, such that both the network TRT and SRT are min-
imised. Let Db denote the duration of restoration intervention 
for each bridge b = 1,… , d. The network TRT associated with 
the schedule x, tr(x), is then:

 

The network SRT associated with the scheduling plan x, s(x), 
the centroid of the area under the recovery trajectory as shown 
in Figure 3, can be calculated by Equation (4), which requires the 
integrals of WIPW, i.e. (t), as a function of time. As discussed 
previously, computing WIPW involves using Dijkstra’s algorithm 
(Skiena, 1990) to search for IPWs for all O-D pairs, which can-
not be performed in closed-form. Therefore, WIPW is estimated 
at discrete points in time; consequently, the recovery trajectory 
(expressed in terms of WIPW) is discretised into step functions. 
In addition, T = {t0, t1, …, tk} is set such that t0 ≤ t1 ≤ … ≤ tk, in 
which the difference between any adjacent time points is a con-
stant time increment Δt. The SRT can then be approximated by:
 

(3)tr(x) = max
b=1,2…d

(xb + Db) − t
0

(4)s(x) =
�
t
0
+tk

t
0

(t) ⋅ (t − t
0
)dt

�
t
0
+tk

t
0

(t)dt
≈

∑k

i=0 ti(ti)Δt
∑k

i=0 (ti)Δt

For post-event recovery scheduling investigated in this study, a 
damaged transportation network is considered as fully recovered 
if the network WIPW computed using Equation (2) returns to 
its pre-disaster level (without damaged network components).

3.  Optimisation of network recovery scheduling

In this study, two metrics for resilience-based network recovery 
planning are introduced. The first metric is the total recovery 
time (TRT), tr, after which the network is restored to its ‘undam-
aged’ condition (damage level for all arcs equals to 0 and network 
WIPW resumes to its pre-disaster value). As discussed previ-
ously, the TRT alone is not sufficient to evaluate the efficiency 
of network recovery strategies, which is partially encapsulated in 
the shape of the recovery trajectory. For example, Figure 3 shows 
two recovery trajectories as a function of time resulting from 
two different network restoration schedules, where the network 
performance (vertical axis) is measured by WIPW; 

0
 and h 

denote, respectively, the network WIPW before and immediately 
after the extreme event.

It is obvious that while restoration schedules 1 and 2 lead to 
approximately the same network recovery time, schedule 1 is 
notably more efficient than schedule 2 with respect to the eco-
nomic losses incurred due to interrupted network service during 

Figure 3. Skew of network recovery trajectory.

Table 1. Summary of the realised optimisation formulation.

Description Equations Equation No.
Input parameters Network topology: G = (V , A)

ADT: Fij(�); arc Length: Lij∀(i, j) ∈ A
Damage level of bridges: qb ∈ {0, 1, 2, 3, 4}∀b ∈ B 
Bridge restoration duration: Db(�b) ∀b ∈ B

Decision variables intervention time for bridge b  x = {x1, x2, x3, …, xd}
Global Objective 1  mintr (x) = max

b=1,2…d
(xb + Db(�b)) − t

0
(3)

Minimise total recovery time
Global Objective 2  mins(x) =

∑k
i=0 ti(ti )Δt

∑k
i=0 (ti )Δt

(4)
Minimise skewness
Global Constraint 1

 WIPW = (G) =
n
∑

i=1

wi

1

n−1

n
∑

j=1,j≠i

K
(i,j)
∑

k=0

wk(i, j)
∏

∀a∈Pk (i,j)

(1 −
qa

4
)

(2)
Network performance metric at time t

Local Constraint 2  qt
b

(

xb
)

= qb[xb + Db(𝜁b) > t], b = 1, 2,… , d,∀t ∈ T (5)
Bridge damage level after repair
Local Constraint 3

 
m
∑

b=1

�

t ≥ xb
��

t ≤ xb + Db(�b)
�

≤ Nmax

SI
, ∀t ∈ T

 (6)
Simultaneous interventions cannot exceed maximum 
Local Constraint 5  tr(x) ≥ xb + Db(�b), b = 1, 2,… , d
Complete recovery time
Local Constraint 4  xb ≥ 0, b = 1, 2,… , d
Variable interval
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The optimal restoration sequence for all damaged bridges 
and the time at which restoration is initiated for each bridge are 
obtained by minimising the network TRT (as defined by Equation 
(3)) and SRT (as defined by Equation (4)), under the constraint 
that only a prescribed maximum number of simultaneous res-
toration actions are possible at any given time (as expressed by 
Equation (6)). The complete optimisation model is summarised 
in Table 1. The ADT of each roadway [used in calculating the 
term wk(i, j) in estimating the WIPW for the damaged network 
as expressed in Equation (2)] and the duration of restoration 
intervention for each bridge are treated as random variables 
denoted, respectively, as Fij(𝜉) for all 

(

i, j
)

∈ A and Db(𝜁b) for all 
b ∊ B, where 𝜉 and 𝜁 are stochastic variables. The distribution of 
Fij(𝜉) can be derived from historical ADT measurements which 
are readily available from federal, state or local bridge owners. 
Db(𝜁b)is assumed to have a normal distribution with a mean that 
is a function of both the damage level (qb) and deck area of the 
bridge (Ab) (Fragkakis & Lambropoulos, 2004). Realisations of 
these random variables are denoted as Fij(�) and Db(ζb).

The decision problem under investigation, as formulated in 
Table 1, is closely related to the NP-hard parallel machine sched-
uling problem (Cheng & Sin, 1990; Lenstra, Rinnooy Kan, & 
Brucker, 1977; Ullman, 1975). We assume bridge repair sched-
uling is non–pre-emptive, that is, once a crew has begun repair 
on a given bridge, they must complete their work before moving 
to another bridge. Additionally, the problem under investigation 
is further complicated by the necessary estimation of WIPW 
which, as discussed, is computed iteratively through a series of 
weighted shortest path problems. Approximation approaches are 
commonly utilised for addressing complex scheduling problems 
(e.g. Cheng & Gen, 1997).

Accordingly, the GA for the scheduling problem described 
in Gonçalves et al. (2005) is modified to be applicable for the 
purposes of this study, i.e. to identify the near-optimal solutions. 
The classical weighted-sum method (Deb, 2001; Kim & De Weck, 
2005) is applied to the two objectives, TRT and SRT, to form a 
fitness function as follows:

 

where c ∊ [0, 1] is introduced as a weighting factor to impose the 
relative importance between the two objectives. A community 
(or government decision makers) can use different weighting 
factors based on their preferences, value and tolerances to dif-
ferent risks in order to obtain the ‘best’ strategy to their specific 
situation. For the example presented in the subsequent section, 
we simply apply equal weights to the two objectives for illustra-
tion. It is worth to note that even though the GA is implemented 
with one fitness function in the way we choose to perform the 
optimisation, there are alternative approaches to keep the objec-
tives separate, e.g. non-dominated sorting GA II (Deb, Pratap, 
Agarwal, & Meyarivan, 2002). The optimisation process is sum-
marised in Figure 4. The stochastic variables (i.e. Fij(𝜉) and Db(𝜁b))  
are realised using MCS.

Note that the two objectives, TRT and SRT, represent two 
very distinct characteristics of the network recovery. Summing 
the two objectives to form a fitness function is simply the way 
we choose to solve the optimisation problem efficiently, which 
is independent of the multiobjective optimisation formula-
tion for the recovery as shown in Table 1. There are alternative 

(7)min[c ⋅ tr(x) + (1 − c) ⋅ s(x)]

in which tk, set to be larger than any possible TRT, represents a 
common reference timeframe for computing SRT for different 
strategies. During the recovery phase, the damage level of each 
bridge b at any time t ∊ T is:

 

where [P] is the Iverson bracket, which returns 1 if P is true, 
and 0 otherwise.

Equation (5) ensures that the bridge b remains at its initial 
damage level qb until its scheduled restoration intervention is 
completed; its damage level then becomes 0 after the comple-
tion of the intervention (i.e. when t ≥ xb + Db). This assumption 
implies that selected lane closure during a bridge restoration 
project is not considered. That is, a bridges is not treated as a 
feasible link in searching for IPWs in the estimation of WIPW 
(i.e. (t) in Equation (4)). At any given time t ∊ T, the number 
of simultaneous restoration interventions within the entire net-
work, denoted by Nt

SI
, can be computed as:

 

where [P] is the Iverson bracket as introduced above; Nmax

SI
 

denotes the maximum number of simultaneous restoration inter-
ventions in the network allowed by the human and financial 
resources available in the community for the recovery of the road 
network following the hazard event. Accordingly, Nmax

SI
, imposes 

a constraint to the restoration scheduling, and thereby can impact 
the overall network recovery characteristics expressed in terms 
of TRT, tr(x), and SRT, s(x).

(5)qtb
(

xb
)

= qb ⋅ [t < xb + Db]

(6)Nt
SI
=

m
∑

b=1

[

t ≥ xb
][

t ≤ xb + Db

]

≤ Nmax

SI

Figure 4. Flow chart of the GA.
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The network WIPW prior to and immediately following the 
scenario event are 1.74 and 0.62, respectively, representing a 
64.4% sudden drop in network performance (the vertical coordi-
nates of the resilience curve). In the subsequent network recovery 
optimisation, it is assumed that the bridges with a damage levels 
2–4 cannot carry traffic until the completion of their scheduled 
repair; furthermore, the limited available resources for recovery, 
representing a mid-income (average) community, only allow a 
maximum number of four bridges to be repaired and restored 
simultaneously, i.e. Nt

SI
≤ 4.

4.2.  Optimal schedule for network restoration

The optimal bridge restoration schedule is determined using 
the GA summarised in Figure 4. The specific tuning parameters 
and stopping criterion play a critical role in the efficacy of the 
algorithm. These parameters include population size, crosso-
ver rate, mutation rate, and elitist mechanisms (see, e.g. Davis 
(1991)). A generation in the GA refers to one complete cycle as 
depicted in Figure 4. Table 5 summarises the GA parameters 
used in this illustration, which were determined after extensive 
experimentation.

In total, 500 random instances were generated using MCS 
and optimise the restoration of each of the 500 instances using 
the aforementioned GA. Figure 6 illustrates the distribution of 
optimal network recovery time under stochastic conditions. 
Considering the uncertainties associated with restoration dura-
tion and ADT for each bridge, the mean network recovery time is 
21.3 months and the standard deviation is approximately 20 days. 
The Δt and tk in Equation (4) are set to be 1 day and 50 months, 

approaches to keep the objectives separately, e.g. non-dominated 
sorting genetic algorithm II, if preferred.

4.  Numerical application

4.1.  Bridge network characteristics

The proposed methodology is illustrated using a hypothetical 
road transportation network, shown in Figure 5, in which there 
are 37 arcs and 30 nodes. The gray nodes (Node 9 and 17) repre-
sent emergency nodes and other nodes represent normal nodes. 
For simplicity, each arc is assumed to be associated with exactly 
one bridge; out of the 37 bridges, 19 are steel (S) bridges and 
18 are reinforced concrete (RC) bridges. A scenario earthquake 
with a magnitude 7.0 and an epicentre distance of 40 km from 
the centroid of the network is considered for this illustration. The 
network parameters used in this illustration, including bridge 
type and ADT, are tabulated in Table 2. The initial damage levels 
for all bridges for the stipulated hazard event are tabulated in 
Table 3.

Among the 37 bridges, 15 bridges sustained negligible dam-
ages, while the other 22 suffer damage at different levels: six have 
major (complete or extensive) damages, five are moderately dam-
aged and 11 have slight damages. These initial damage levels are 
assigned inversely proportional to the bridge reliabilities (Zhang 
& Wang, 2016), and are used as a starting point for recovery 
scheduling. The restoration duration of each damaged bridge 
is also presented in Table 2. The uncertainty models that we 
assumed for the parameters Fij(�) and Db(�b) are summarised 
in Table 4.

Figure 5. Hypothetical bridge network.
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algorithm. GA is allowed to run up to 60 min and it is observed 
that GA converges in 30 min. Therefore, the maximum allowable 
running time is set as 30 min for all experiments in this section. 
The best fitness value in the initial GA population is 78.14 and 
decreases to 49.95 in 30 min (600 generations). The fitness value 
of 49.95 is the sum of the network TRT (21.42 months) and SRT 
(28.53 months).

Figure 8 illustrates the quality of the near-optimal solution 
from each generation of GA with respect to the fitness function, 
which shows that TRT and SRT are highly positively correlated. 
Note that this correlation will be much less if all feasible solutions 
are included in the Figure 8. Even with only the near-optimal 
solutions, Figure 8 indicates that for a given TRT there exist many 
alternative strategies with different SRT representing different 
recovery trajectories. This observation confirms that TRT alone, 
if used as the sole objective for recovery, is not sufficient to ensure 
the optimal recovery schedule with the ‘best’ trajectory. The SRT 
ensures the recovery efficiency among the alternative schedules 
that represent the same recovery time.

The optimal network restoration schedule is illustrated in 
Figure 9, which shows the times at which restoration interven-
tion is initiated and completed for each damaged bridge. The 
length of the bar associated with each bridge is the duration 
of the intervention. This optimum schedule allows all damaged 
bridges in the network to be restored in less than 21 months, 
given that the maximum of 4 bridges can be repaired simultane-
ously. To evaluate the efficiency of this scheduling, we compare 
this optimal solution with a naïve network restoration schedule 
in which all the damaged bridges tabulated in Table 4 are repaired 
in a randomly selected sequence as shown in Figure 10. In this 
case, 23.5 months are required to completely restore the network.

Figure 11 illustrates that the network recovery trajectory 
associated with the optimal recovery plan is superior to that of 
the random restoration sequence. Note that these two recovery 
schedules employ the same amount of resources and the only 
difference between them is the sequence in which the damaged 
bridges are restored to their pre-event conditions. Although, 
the 2.5-month seems to be an insignificant improvement in this 
illustration, one that could be achieved by adding some common 
sense to the completely random strategy, the advantage of this 
scheduling algorithm would become more obvious when dealing 
with large, extensively damaged networks where the decision 
variables, possible alternative strategies and constraints create a 
complex decision problem where intuition may not apply.

Furthermore, if a short-term network recovery objective is 
to ensure that there is at least one path, on average, between 
each O-D pair (i.e. the performance metric WIPW is equal or 
greater than 1), then the optimal recovery scheduling achieves 
this objective 8 months earlier than the random scheduling. We 
note that the bridges selected in the early phase in the optimal 
solution, i.e. bridges 14, 24, 28, are the bridges with the highest 
impact on the overall network performance, as measured by 
WIPW, because they are shared by multiple O-D pairs and are 
close to the emergency facilities. These results demonstrate that 
the optimal scheduling of bridge restoration can greatly improve 
the efficiency of the transportation network recovery. Bridge 
authorities can use this information to allocate their limited 
resources intelligently to both minimise total network recovery 
time and to maximise the recovery efficiency.

respectively. In the remainder of this section, the discussion 
is focused on the optimal solution for a single instance of the 
simulation, x̃, where all the random variables are taken as their 
mean values. This discussion is applicable for all other simulated 
scenarios.

Figure 7 depicts the fitness values defined by Equation (7) over 
the CPU time with three random initial populations in genetic 

Table 4. Statistics of the stochastic parameters.

Parameters Notation Distribution Mean COV
Average daily traffic 

(ADT)
 Fij(�) Uniform As tabulated in 

Table 2
0.05

Duration of restora-
tion intervention

 Db(�b) Normal 0.05

Table 2. Mean values of network parameters.

Bridge ID
Construction 

Type
ADT (Vehicle/

Day)
Duration of restoration 
intervention (Month)

1 RC 2200 4.10
2 RC 1900 1.71
3 S 2000 10.21
4 S 1500 0.00
5 RC 1900 6.52
6 S 2200 0.00
7 S 700 0.00
8 S 2400 0.00
9 S 2600 3.99
10 S 300 4.75
11 S 800 1.44
12 RC 900 2.38
13 S 2500 0.00
14 S 600 2.42
15 RC 2000 1.40
16 S 500 2.11
17 RC 2500 3.32
18 RC 2800 0.00
19 S 1300 2.49
20 S 1700 0.00
21 S 1500 9.04
22 S 1200 3.34
23 RC 1500 0.00
24 S 700 1.28
25 S 1800 0.00
26 S 900 5.02
27 S 600 5.25
28 RC 800 6.65
29 RC 1400 0.00
30 RC 2800 2.35
31 RC 1900 2.46
32 RC 2900 0.00
33 RC 1300 1.65
34 RC 900 0.00
35 RC 2200 0.00
36 RC 700 0.00
37 RC 3000 0.00

Table 3. Damage levels of individual bridges.

Damage 
Level Condition

Number of 
bridges Bridge ID

0 No damage 15 4, 6, 7, 8, 13, 18, 20, 
23, 25, 29, 32, 34, 

35, 36, 37
0–1 Slight damage 11 2, 11, 12, 14, 15, 16, 

19, 24, 30, 31, 33
1–2 Moderate damage 5 1, 9, 17, 22, 27
2–3 Extensive damage 3 5, 10, 26
3–4 Collapsed 3 3, 21, 28
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To investigate the sensitivity of the scheduling to the resource-
fulness of the community (an important characteristic of com-
munity resilience), rather than assuming a constant amount of 
recovery resources (i.e. Nmax

SI
= 4), it is now assumed that the 

maximum number of simultaneous restoration interventions, 
is a dynamic quantity, which changes the recovery process to 

Figure 6. Probability density of the TRT.

Figure 7. Fitness values over time with three random initial populations in GA.
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Figure 8. TRT and SRT of the optimal solutions.

Figure 9. Optimal scheduling with times for initiation and completion of restoration 
for each damaged bridge.

Figure 10. Naïve (random) bridge restoration sequence.

Figure 11. Network recovery trajectories with different restoration schedules.

Table 5. Parameters setting in the GA.

Parameter Value
Population 50
Cross-over rate 0.9
Mutation rate 0.3
Elitist selection 20
Maximum generations 1000
Maximum time 1800 s
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find near-optimal solutions for recovery scheduling. The follow-
ing three aspects of the restoration process have been addressed:

First, a two-dimensional metric – TRT was introduced, and 
the SRT – as measures for the network recovery planning, both of 
which are significantly affected by the restoration sequence when 
resources for post-disaster recovery are limited. This two-dimen-
sional metric can be used collectively as the objectives in identify-
ing the optimal post-event scheduling for the network recovery.

Second, according to Figures 11 and 12, simple functions 
(linear or nonlinear) for recovery trajectory apparently do not 
exist in even simple networks such as the one considered herein. 
Different prioritisation schedules can lead to significant changes 
in both TRT and SRT. The dynamic nature of available resources 
(immediately on-hand or delayed due to outsourcing) can have 
a notable impact on the network recovery time and trajectory. 
Even under circumstances in which the total amount of resources 
utilised in the recovery period is the same, the recovery trajec-
tory is sensitive to the timing in which such resources are made 
available.

Third, both the scheduling framework and the GA used to 
obtain the optimal solutions can be extended to handle large and 
complex networks. This problem is NP-Hard (Lenstra & Kan, 
1981); accordingly, the problem solving time may increase sig-
nificantly with the size of the network. However, there is no lim-
itation regarding network size on the mathematical formulation 
itself presented herein. Moreover, many advanced techniques 
can be employed to reduce the solving time, such as parallelised 
computing. Finally, the distribution of recovery time under sto-
chastic conditions, the intelligent network restoration scheduling 
(intervention time and completion time) and the corresponding 
recovery trajectory can be visualised easily, which provides a 
wealth of information for bridge authorities to make decisions 
regarding the post-disaster recovery of transportation networks.

Notes
1. � In the WIPW formulation, a link is a segment that can only have 

one bridge at most, because the mitigation decision is made on 
individual bridges (links), each of which needs a unique identity in 
the network topology representation.

2. � A pathway between a node-pair usually consists of multiple arcs 
connected in series. Independent pathways (IPW) are defined as 
the pathways between a node-pair that do not share any common 
arcs (road segments). Dijkstra’s algorithm (Skiena, 1990) can be 
used to search for IPWs between any node pairs.
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reflect different community social-economic structures and 
investment patterns. For instance, poorer communities may have 
fewer resources available immediately following the event and 
may depend on outside resources which take time to deploy. To 
address this case, we assume that the value of Nmax

SI
 is 2 for the 

first 7 months, 4 from the 7th to 14th months, and 6 after the 
14th month.

Conversely, a wealthy community might have more resources 
on hand to address the initial impacts of a disaster but may 
decrease the investment in recovery as the network resilience 
improves. To model such a situations, it is assumed that Nmax

SI
 is 

dynamically decreasing from Nmax

SI
 = 6 for the first 7 months, 4 

for the following seven months, and then, 2 until all bridges are 
repaired. Figure 12 displays the associated resilience trajectories 
for the three communities with different resource investment 
patterns: wealthy (6- > 4- > 2), middle-income as considered 
previously with constant recovery resources (4- > 4- > 4) and 
poor (2- > 4- > 6). The recovery time of the wealthy and mid-
dle-income communities are approximately the same; however, 
the SRT of the wealthy community indicates a more efficient 
recovery schedule.

The network performance metric WIPW of the wealthy com-
munity achieves the value of 1 at month 7 which is two months 
earlier than is achieved by the average community. Furthermore, 
although the poor community has six simultaneous interventions 
in progress after 14  months, its TRT still is 3  months longer 
than that of both the wealthy and the average communities. It is 
evident that the resource allocation pattern as a function of time 
can significantly impact the efficiency of the network recovery.

5.  Conclusions

This paper has presented a novel and dynamic model to opti-
mise the restoration schedules of transportation networks 
following extreme events. The model incorporates a network 
resilience-based performance metric, recovery trajectory, com-
munity resourcefulness, and uncertainties relating to damage 
levels and restoration duration of damaged bridges in a quan-
titative resilience-based decision framework for road network 
recovery. An efficient metaheuristic approach was employed to 

Figure 12. Resilience as a function of time under different recovery capability.
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