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A new search heuristic, Divided Neighborhood Exploration Search, designed to be used with inference
algorithms such as Bayesian networks to improve on the reverse engineering of gene regulatory networks
is presented. The approach systematically moves through the search space to find topologies representa-
tive of gene regulatory networks that are more likely to explain microarray data. In empirical testing it is
demonstrated that the novel method is superior to the widely employed greedy search techniques in
both the quality of the inferred networks and computational time.
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1. Background

A gene regulatory network (GRN) is a collection of genes, regu-
lators, and regulatory connections that govern expression levels
[1]. Analysis of GRNs has become essential for better understand-
ing cellular systems because it provides insight into which genes
control the activation of others [2,3]. The network topology has
various interpretations in literature: the nodes in the GRN may
represent genes or their protein products, the undirected edges
between nodes may indicate genes are co-regulated, share com-
mon functionality, location or process, or directly bind one
another; and directed edges may imply a step in a metabolic path-
way, signal transduction cascade, stage of development, or a causal
relationship [4]. These networks create the blackprint of the cellu-
lar system structure and provide design details of the cell.

Research in computational systems biology revolves around
inferring or reverse engineering GRNs based on gene expression
levels [5]. A basic assumption within the field is that the observed
data, which are the changes in mRNA expression profiles, can
explain transcriptional regulation. By inferring the underlying gene
regulatory network from these large-scale experiments, ultimately
the molecular role can be understood. The expression levels are the
output of specific gene regulatory networks and therefore many
algorithms have been studied to reverse engineer the GRNs most
likely to produce observed expression data. Numerous issues arise
from modeling GRNs from experimental data and therefore no one
modeling technique outperforms all others. There are a vast num-
ber of genes and potential relationships; the experimentation to
measure expression levels often result in noisy data; and there
may be unobserved factors affecting the activity of genes that are
not represented in the experiments conducted [1,6]. Once the net-
works are modeled, the topologies are scored to determine which
are most consistent with the data. However, even the simplest
GRNs are complex systems and difficult to infer.

Active research in reverse engineering of GRNs is conducted by
testing different mathematical methods on computer generated
networks where the true network is known. This allows for both
validation and analysis of various inference algorithms. There are
a few notable models commonly used for inferring GRNs: boolean
networks [7], differential equations and linearization [8], regres-
sion methods [9], Gaussian models [10], conditional correlation
analysis [11], and static and dynamic Bayesian networks [12,13].
Each provides advantages and disadvantages when inferring
topologies [14]. Ultimately, the goal is to reverse engineer net-
works with confidence that the output of the statistical model is
representative of the biological system.

1.1. Bayesian networks

Bayesian network (BN) modeling is an approach that combines
probability and graph theory which has been useful in recovering
gene regulatory networks from data. They can be used to describe
the relationship between variables in gene regulatory networks
and are promising because they can capture multiple types of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbi.2016.11.010&domain=pdf
http://dx.doi.org/10.1016/j.jbi.2016.11.010
mailto:cnicholson@ou.edu
mailto:leslie.goodwin@ou.edu
mailto:coreyc@smu.edu
http://dx.doi.org/10.1016/j.jbi.2016.11.010
http://www.sciencedirect.com/science/journal/15320464
http://www.elsevier.com/locate/yjbin


C. Nicholson et al. / Journal of Biomedical Informatics 65 (2017) 120–131 121
relationships [15]. These networks describe the relationship at a
qualitative level. At the qualitative level, the graphical model
showcases the dependences between various genes, which are
encoded in the structure of the directed graph. An example BN is
depicted in Fig. 1 in which X ¼ X1; . . . ;X5ð Þ represents the genes
and the edges represent the dependencies. Each term pðXijPAiÞ is
the probability for a variable conditioned on the set of parents
PAi of Xi. Bayesian networks specify the joint distribution over all
variables for the conditional distribution of the node given the par-
ental relationship:

pðX1; . . . ;XnÞ ¼
Yn

i¼1

pðXijPAiÞ:

Numerous experiments have been conducted on in silico data to
compare Bayesian networks to other inference models. Margolin
et al. [16] developed ARACNE (algorithm for the reconstruction of
accurate cellular networks) as another algorithms for inferring
GRNs. Their study compares ARACNE to BNs because BNs are so
widely used in reverse engineering and as such, the authors claim
they provide an ideal benchmark technique. BNs are among the
most effective models because of their ability to account for the
stochastic nature of gene expression profiles and the easy integra-
tion of prior knowledge [14,17].

BNs are directed acyclic graphs and therefore the topology pro-
duced by the predicted model will include directed edges. This
allows for modeling gene expression levels which depend on the
regulators (parents) in the network. Accurate directed predictions
are more difficult than undirected predictions. Some algorithms
(e.g. ARACNE) only produce undirected results since the undirected
topologies still provide useful insight into the underlying structure.

Given observed expression data D, a Bayesian network
approach enables a quantitative assessment regarding the likeli-
hood that directed graph G produces such data. The general Baye-
sian scoring metric from [1] is the posterior probability of graph G
given D:

SðG : DÞ ¼ log PðGjDÞ ¼ log
pðDjGÞpðGÞ

pðDÞ
¼ logpðDjGÞ þ logpðGÞ þ constant: ð1Þ

The goal is to maximize the Bayesian score in Eq. (1). This score pro-
vides the ability to evaluate the quality of candidate graphs when
searching for the network topology. In particular, we employ the
Bayesian Dirichlet Equivalence (BDe) score [18,19] to help learn
the BN and evaluate candidate GRN. This score incorporates a like-
lihood equivalence assumption and also allows for the incorpora-
Fig. 1. Bayesian network example.
tion of prior knowledge [19]. If relationships between nodes are
already known, this information can be incorporated into the
model. The metric penalizes any graph not containing an edge pro-
vided in the prior network. Another advantage of the score is the
penalization of overly complex structures and the preference of
simpler models of equally good networks.
1.2. Search heuristics

Finding the network topology that maximizes the likelihood of
expressing the observed data is NP-hard [20,21]. Since the search
space is large and no efficient exact algorithms are known for this
problem, heuristic search is commonly used. The goal of heuristic
search is to find a near optimal solution quickly and efficiently.

One commonly used search heuristic is the greedy technique
hill climbing [6,22,23]. Hill climbing is similar to gradient ascent
except that no derivatives are necessary. Instead, this iterative
approach evaluates solutions that are ‘‘near” the current solution
and adopts a new solution if a better one is found in the local
search space. Compared with other techniques, this greedy search
is fast, computationally simple, and requires few tuning parame-
ters. Hill climbing, however, is myopic and prone to premature
convergence to poor local optima. Random restarts are incorporated
to mitigate this issue and expand the search region by performing
hundreds or thousands of hill climbing procedures from randomly
generated initial locations in the search space [24]. Yu et al. [15]
found hill climbing with random restarts superior to simulated
annealing and genetic algorithms. Other local search methods have
been applied to learning Bayesian networks outside of the scope of
gene regulatory networks: genetic algorithms [25], tabu search
[26], ant colony optimization [27], dynamic programming with
Markov Chain Monte Carlo techniques [28,29] and swarm opti-
mization [30].

While Bayesian networks continue to be widely studied in
application of gene regulatory network inference, research on the
search heuristics paired with GRN inference is relatively limited.
To date no search algorithms which have been paired with GRN
inference have been able to compete with both the speed and solu-
tion quality of hill climbing with random restarts. It is the focus of
this study to introduce a search heuristic that outperforms this
greedy approach without compromising computation time. In this
investigation we propose the Divided Neighborhood Exploration
Search (DNES) heuristic to be paired with the Bayesian network
modeling framework and evaluate its performance in producing
high quality GRN’s.
2. Methods

2.1. In silico data and inference

To accurately evaluate an inference method, the true network
must be known. As such, in silico data must be used. In particular,
a directed acyclic graph, G ¼ ðV ; EÞ is constructed where V is the set
of nodes, and E is the set of directed edges ði; jÞ, with i; j 2 V . The
constructed topology can then be used to generate data that simu-
lates gene expression data using ordinary differential equations
that relate the changes in gene transcript concentration to each
gene and to external perturbations. An inference method is used
to reverse engineer the original network from the data. In the pre-
sent study, we compare the implementation of Bayesian networks
with a known greedy technique versus the novel DNES algorithm.
Since the true network G is known, the quality of the engineered
network G0 is assessed based on agreement between the topologies
of G and G0. Fig. 2 depicts the high-level process.



Fig. 2. Overview of in silico data generation and search heuristic evaluation process.
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Two measures, positive predictive value and sensitivity, are com-
monly used as evaluation metrics to compare G and G0 and thus
evaluate the inference technique. Let TP; FP; TN, and FN denote
‘‘true positives”, ‘‘false positives”, ‘‘true negatives” and ‘‘false nega-
tives”, respectively. Table 1 describes the relationships of these
characteristics with respect to evaluating GRN inferences. A true
positive is when an edge exists in both G and G0; a true negative
is when an edge does not exist in either, a false positive is an error
wherein the inferred topology includes an edge that is not in G;
and a false negative is when the inferred topology excludes an edge
which does exist in G. Positive predicted value (PPV) is defined as

PPV ¼ TP
TP þ FP

and sensitivity (SE) is given by

SE ¼ TP
TP þ FN

Bayesian networks can be inferred from both large steady-state
expression data and time series data [12,31]. Steady-state expres-
sion data represents data collected from perturbation experiments
in which one or multiple genes are perturbed and the expression
levels for all other genes are measured. Static (as opposed to
dynamic) Bayesian networks are appropriate for steady-state per-
turbation experiments. We employ static BNs as the inference tool
in this study.

While expression data frommicroarray experiments are contin-
uous, for many genes, transcription occurs in only a small number
of states. For example, it will occur when the expression level is
low or high and does not occur between these states. Furthermore,
when expression levels are measured significant noise is intro-
Table 1
TP; FN; FP; TN definition with respect to edge ði; jÞ as an element of the true graph G
and the predicted graph G0 .

ði; jÞ 2 G ði; jÞ R G

ði; jÞ 2 G0 TP FP

ði; jÞ R G0 FN TN
duced and the data becomes more robust with respect to error
when discretized [32]. Discretization of data is often employed
prior to BN analysis [e.g., 15,33,34]. The data for this investigation
are discretized using a three-category interval method. Two-
category discretization creates high imprecision while networks
reconstructed using four-category have had lower recall [15].
Three-category balances the loss of information due to overly
coarse discretization and the difficulty of recovering links to nodes
with multiple parents due to finer discretization.

The goal is to evaluate the effects of changing the search heuris-
tic component of the inference algorithm to find the best solution
within the search space. Bayesian networks were chosen as the
inference component because of their popularity in evaluating
GRNs. The novel search heuristic, DNES is implemented and com-
pared with hill climbing with random restarts.
2.2. Divided neighborhood exploration search design

DNES is a form of variable neighborhood search (VNS) [35], a
technique which systematically modifies neighborhoods during a
search to emerge from a local optimum. It incorporates many
neighborhood structures whereas a local search typically only
searches through one structure. VNS has been applied successfully
to a wide variety of problems [36–38]. The DNES method uses VNS
as the global search and variable neighborhood descent (VND)
implemented as the local search component. Combining VNS with
VND has led to successful applications [39]. VNS and VND will now
be briefly described.

VNS depends on a finite number of pre-defined neighborhood
structures. Often, VNS implementations use neighborhood defini-
tions which are in some way nested structures. That is, neighbor-
hood structure k is a subset of structure kþ 1, or the scope of the
neighborhood is increasing (e.g., the 3-opt neighborhood used in
the Traveling Salesman Problem is larger than the 2-opt neighbor-
hood). However, there has been success using non-nested neigh-
borhoods [38].

Assume k ¼ 1; . . . ; kmax neighborhood structures have been
defined. Let x denote a solution in the search space. In the case of
reverse engineering gene regulatory networks, a solution is an
instance of a network topology (i.e., a set of nodes and edges). In
general, let N kðxÞ denote the set of solutions in the kth neighbor-
hood of x. The global search component of the general VNS
approach randomly chooses and evaluates a different solution
x0 2 N kðxÞ. A local search is then engaged to attempt to improve
on the quality of x by searching the neighborhood of x0. If a better
solution, x00, is found, the global search moves from solution x to x00.
Otherwise, the procedure repeats using N kþ1ðxÞ as the set of neigh-
bors. The basic VNS algorithm is detailed in Fig. 3.

DNES uses VND as the local search mechanism. VND shares
similarities with VNS except notably the stochastic element is
eliminated. During the VND local search of x0, every element of
N kðx0Þ is evaluated. If the best value x00 2 N kðx0Þ is better than x0,
then the VND moves to the new solution x00 and continues the local
search within N kðx00Þ. Otherwise, if no improvement on x0 is found
within N kðx0Þ; k is incremented, and the local search continues in
N kþ1ðx0Þ. Once all kmax neighborhoods have been examined, the
best solution discovered is returned to the global search procedure.
The VND local search algorithm is depicted in Fig. 4.

The most important design decision for variable neighborhood
search relates to the neighborhood structure definitions. A typical
hill climbing approach to GRN applications defines the search
neighborhood of graph G as every graph obtainable by a single
addition, deletion, or reversal of an edge. DNES divides this larger
neighborhood into three smaller neighborhood structures based
on the allowable moves: add, reverse, and delete. The add neighbor-



Fig. 3. Variable neighborhood search algorithm.

Fig. 4. Variable neighborhood descent algorithm used as LocalSearch of VNS.
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hood of G is defined as every acyclic graph obtainable by a single
edge addition to G; the reverse neighborhood is defined as every
acyclic graph obtainable by a directional reversal of an edge
already existing in G; and, the delete neighborhood contains all
graphs obtainable by deleting a single edge of G. Respectively,
denote the three neighborhoods as N addðGÞ;N reverseðGÞ, and
N deleteðGÞ of graph G. Fig. 5 depicts a simple example. For a graph
with n nodes and m edges and ignoring acyclic requirements, the
add, reverse, and delete neighborhoods contain nðn�1Þ

2 �m;m, and
m neighbors, respectively. A move that causes a cycle is not feasi-
ble and therefore is excluded from evaluation.

The DNES implementation has kmax ¼ 3 neighborhood struc-
tures. The design is meant to evaluate the effectiveness of dividing
the exploration of the space into three non-overlapping move-
based rules. For a given solution G and the associated ith and jth
neighborhoods, N iðGÞ \ N jðGÞ ¼ £ for all i – j. This DNES variation
of VNS with respect to partitioning of search moves is similar con-
ceptually to the variant proposed in [38]. In their work they consid-
ered 19 different neighborhoods, each inherently mutually
exclusive. They also note that the ordering of the neighborhood
structures is important for non-nested designs since VNS is biased
towards the first neighborhood structure.

In this study we evaluate two orderings: add, reverse, delete
and secondly, delete, reverse, add. In the former, the search is
biased towards adding more edges. In the latter, the search is
biased towards deletions. Using the add neighborhood as the initial
structure may produce denser networks than the alternative.
Empirical analysis of these two permutations will provide more
insight regarding the order-based performance.

Bayesian Network Inference with Java Objects (Banjo) [15] is
the open-source software framework that supports the implemen-
tation of DNES. Specifically, Banjo provides the mechanism for
computing the BDe score for a given network topology. Banjo has
been evaluated and compared with other inference tools and was
found to perform well with respect to positive predicted value,
but less so with respect to sensitivity [5,40]. DNES is implemented
through a variety of changes to the Banjo search framework, how-
ever the scoring mechanism is left intact.

2.3. Experimental design

To evaluate the effectiveness of the novel search mechanism, a
total of 200 sets of gene networks are considered. This data comes
from two primary sources. The first of which are in silico networks
and expression data developed and successfully evaluated in Ban-
sal et al. [5]. Each of these directed networks is composed of either
10 or 100 genes with an average in-degree per gene of 2 or 10,
respectively. There are twenty 10 gene networks and twenty 100
gene networks. The corresponding expression data is generated
using linear ODEs that relate the changes in gene transcript con-
centration to each gene and to external perturbations to simulate
knockdown experiments. The simulated data includes ‘‘white



Fig. 5. Add, reverse, and delete neighborhoods of graph G.
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noise” as an error term (with zero mean and standard deviation
equal to one tenth the absolute value of the expression level) to
simulate the noise that occurs during measurement.
Table 2
Search methods.

Notation Approach Number of restarts

LG500 Local greedy 500
LG1000 Local greedy 1000
RG500 Random greedy 500
RG1000 Random greedy 1000
A/R/D DNES Add/Reverse/Delete 0
D/R/A DNES Delete/Reverse/Add 0

Table 3
Summary of search algorithm metrics on benchmark data from [5].

Genes Technique PPVU SEU PPVD

10 LG500 0.787 0.234 0.461
(0.23) (0.13) (0.24)

LG1000 0.793 0.237 0.461
(0.22) (0.13) (0.24)

RG500 0.79 0.234 0.419
(0.20) (0.14) (0.20)

RG1000 0.796 0.234 0.425
(0.19) (0.14) (0.21)

A/R/D 0.856 0.193 0.383
(0.192) (0.12) (0.31)

D/R/A 0.843 0.196 0.413
(0.22) (0.12) (0.31)

100 LG500 0.207 0.020 0.117
(0.04) (0.004) (0.03)

LG1000 0.207 0.020 0.117
(0.04) (0.004) (0.03)

RG500 0.855 0.024 0.524
(0.12) (0.01) (0.10)

RG1000 0.873 0.025 0.521
(0.13) (0.01) (0.11)

A/R/D 0.875 0.051 0.524
(0.08) (0.03) (0.08) (0.02)
D/R/A 0.877 0.051 0.533

(0.08) (0.03) (0.09)
The second set of in silico data are generated using GeneNetWea-
ver [41]. GeneNetWeaver (GNW) is an open-source application for
generating networks by extracting subnetworks from known bio-
logical interaction networks. Such an extraction process allows
researchers to use gold standard networks which are reflective of
more realistic gene network topologies [42]. The tool allows users
to define various parameters of the in silico data including the
number of nodes in the subnetwork, type of simulated experiment
(e.g., knockout or knockdown), and how much noise to introduce
into the data. Synthetic expression data from the GNW knockout
experimentation reflect steady-state levels of single-gene knock-
outs – the transcription rates of each gene are independently set
to zero one at a time. A similar method is used for simulated
knockdown expression data, except the transcription rates are
reduced by half instead of set to zero. Search heuristics may per-
SED BDe Time Networks

0.138 �65 1.28 1,573,674
(0.09) (5.9) (0.26) (30,062)
0.138 �65 2.23 3,146,977
(0.09) (5.9) (0.47) (59,445)
0.132 �65 0.83 1,500,495
(0.09) (5.9) (0.13) (1119)
0.132 �65 1.53 3,001,175
(0.09) (5.8) (0.26) (3313)
0.105 �64 0.02 1092
(0.10) (7.1) (0.01) (455)
0.111 �64 0.02 1168
(0.10) (6.8) (0.01) (352)

0.012 �1483 58.99 5,054,899
(0.003) (408.0) (5.31) (1329)
0.012 �1483 117.18 10,109,972

(0.003) (408.0) (9.38) (2716)
0.015 �1266 8.28 2,243,000
(0.01) (346.7) (2.06) (262,332)
0.015 �1264 15.76 4,486,225
(0.01) (346.9) (3.66) (524,690)
0.031 �1167 1.74 654,096

(291.1) (1.41) (376,399)
0.031 �1164 1.81 662,784
(0.02) (288.8) (1.27) (373,703)



Table 4
Summary of search algorithm inferred edges on benchmark data from [5].

Genes Technique Undirected Directed Edges

TP FP FN TP FP FN

10 LG500 4.0 2.0 13.5 2.5 3.5 15.7 6.0
(2.15) (2.53) (3.03) (1.67) (3.12) (2.06) (4.26)

LG1000 4.1 2.0 13.5 2.5 3.5 15.7 6.0
(2.16) (2.48) (3.05) (1.67) (3.12) (2.06) (4.26)

RG500 4.0 1.8 13.5 2.4 3.4 15.8 5.8
(2.22) (2.1) (3.1) (1.6) (2.87) (2.02) (4.01)

RG1000 4.0 1.7 13.5 2.4 3.3 15.8 5.7
(2.22) (1.95) (3.1) (1.6) (2.84) (2.05) (3.91)

A/R/D 3.3 0.9 14.4 1.9 2.3 16.3 4.2
(1.95) (1.27) (3.03) (1.94) (1.52) (2.34) (2.76)

D/R/A 3.4 1.0 14.4 2.0 2.4 16.2 4.4
(2.06) (1.43) (3.05) (1.86) (1.93) (2.32) (2.87)

100 LG500 20.3 77.2 967.9 11.4 86.1 978.3 97.5
(4.12) (5.25) (4.79) (2.72) (6.21) (3.61) (6.54)

LG1000 20.3 77.2 967.9 11.4 86.1 978.3 97.5
(4.12) (5.25) (4.79) (2.72) (6.21) (3.61) (6.54)

RG500 24.1 5.6 962.7 14.9 14.8 974.9 29.7
(10.49) (6.44) (12.41) (6.64) (10.10) (7.44) (16.04)

RG1000 24.8 5.2 962.4 14.9 15.1 974.8 30.0
(10.66) (6.64) (12.50) (6.67) (10.23) (7.51) (16.18)

A/R/D 49.9 10.2 935.2 30.9 29.2 958.9 60.0
(27.51) (11.38) (31.43) (18.32) (20.77) (18.71) (38.06)

D/R/A 49.9 10.0 935.2 30.9 29.0 958.8 59.9
(27.47) (11.29) (31.40) (18.33) (20.75) (18.65) (37.91)

Table 5
Summary of search algorithm metrics on GNW data.

Type Genes Technique PPVU SEU PPVD SED BDe Time Networks

Knockout 100 LG500 0.053 0.032 0.025 0.016 �1621.1 58.66 5,054,899
(0.03) (0.02) (0.02) (0.01) (247.5) (2.59) (1312)

LG1000 0.053 0.033 0.026 0.018 �1612.5 115.63 10,109,871
(0.03) (0.02) (0.02) (0.01) (248.7) (2.26) (2647)

RG500 0.186 0.104 0.122 0.067 �1114.2 15.11 2,458,185
(0.08) (0.03) (0.06) (0.02) (151.5) (2.90) (177,879)

RG1000 0.180 0.102 0.116 0.065 �1129.0 32.15 5,044,725
(0.09) (0.03) (0.06) (0.02) (193.3) (15.04) (894,366)

A/R/D 0.354 0.274 0.288 0.219 �983.7 6.80 1,625,721
(0.16) (0.11) (0.15) (0.10) (90.1) (4.86) (574,806)

D/R/A 0.357 0.274 0.292 0.221 �981.9 6.87 1,632,420
(0.16) (0.11) (0.15) (0.1) (87.7) (5.01) (592,159)

200 RG500 0.101 0.043 0.059 0.025 �2889.2 51.46 2,494,923
(0.04) (0.01) (0.03) (0.01) (445.4) (9.36) (30,596)

RG1000 0.098 0.043 0.058 0.025 �2883.2 103.02 4,990,050
(0.04) (0.01) (0.02) (0.01) (444.6) (21.41) (58,904)

A/R/D 0.312 0.229 0.257 0.188 �2200.4 139.75 14,088,110
(0.13) (0.10) (0.12) (0.09) (186.0) (99.29) (4,229,160)

D/R/A 0.312 0.228 0.256 0.186 �2199.3 130.09 14,081,374
(0.13) (0.10) (0.12) (0.09) (181.8) (87.86) (4,245,441)

Knockdown 100 LG500 0.060 0.028 0.027 0.013 �1535 58.5 5,054,899
(0.04) (0.01) (0.02) (0.01) (172.8) (2.35) (1312)

LG1000 0.058 0.029 0.026 0.014 �1529 116.2 10,109,871
(0.04) (0.02) (0.02) (0.01) (173.3) (2.93) (2647)

RG500 0.215 0.093 0.142 0.063 �1087 13.3 2,450,303
(0.09) (0.03) (0.06) (0.02) (107.2) (3.2) (186,656)

RG1000 0.208 0.092 0.134 0.060 �1098 28.5 5,028,472
(0.09) (0.03) (0.07) (0.02) (146.3) (15.55) (904,526)

A/R/D 0.433 0.251 0.349 0.203 �980 3.9 1,271,807
(0.18) (0.1) (0.17) (0.1) (67.0) (3.21) (472,404)

D/R/A 0.435 0.252 0.348 0.203 �978 4.0 1,287,779
(0.18) (0.1) (0.17) (0.1) (66.7) (2.98) (467,089)

200 RG500 0.113 0.045 0.059 0.024 �2640 50.6 2,499,960
(0.04) (0.01) (0.02) (0.01) (187.7) (17.03) (521)

RG1000 0.111 0.044 0.060 0.025 �2631 108.6 4,999,860
(0.04) (0.01) (0.02) (0.01) (186.7) (38.38) (962)

A/R/D 0.330 0.190 0.261 0.153 �2182 77.5 11,399,284
(0.13) (0.07) (0.12) (0.07) (132.3) (45.6) (3,338,144)

D/R/A 0.332 0.192 0.262 0.154 �2181 79.3 11,469,056
(0.13) (0.08) (0.12) (0.07) (131.0) (47.82) (3,314,563)
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form differently with knockout expression data compared with
knockdown expression data since the latter is less informative [41].

Currently, there are two source networks available: E.coli with
1,565 nodes and 3,158 edges and the yeast S.cerevisiae having
4,441 nodes and 12,873 edges. Our experimentation is conducted
on twenty instances each of knockdown and knockout simulated
expression data associated with both E. coli and yeast subnetworks
of size 100 and 200 genes. The expression data is generated using
linear ODEs, after which a mix of normal and lognormal noise is
added by the tool to simulate microarray experimentation noise
[43,44]. In total, 160 distinct GNW networks and associated
expression data sets are used.

DNES is evaluated against the greedy search approach hill
climbing with random restarts. Banjo has two different hill climb-
ing implementations which we refer to as random greedy and local
greedy. The first randomly examines a single change in the net-
work, compares the BDe score to the previous topology, and poten-
tially moves to the proposed network based on this comparison.
The second generates a list of all feasible moves within a solution
neighborhood and evaluates each network before deciding
whether or not to move. In both cases the user defines the number
of random restarts. The parameters 500 and 1000 have been set for
the number of restarts used with both variations of the greedy
search. DNES does not utilize random restarts because of the sys-
tematic approach to avoid local optimum. Table 2 outlines the
search methods, the notation used, and the settings evaluated.
Table 6
Summary of search algorithm inferred edges on GNW data.

Type Genes Technique Undirected

TP FP

Knockout 100 LG500 7.2 132.3
(4.75) (52.4)

LG1000 7.3 133.6
(4.91) (53.1)

RG500 24.3 105.9
(11.9) (24.9)

RG1000 23.4 106.1
(12.11) (25.1)

A/R/D 57.5 117.2
(20.33) (57.3)

D/R/A 57.9 116.0
(21.24) (56.8)

200 RG500 22.2 199.8
(8.49) (33.6)

RG1000 21.7 201.0
(7.95) (32)

A/R/D 110.9 262.0
(38.28) (95.8)

D/R/A 110.5 261.6
(37.97) (96.6)

Knockdown 100 LG500 6.5 112.7
(4.12) (43.1)

LG1000 6.6 118.4
(4.11) (46.6)

RG500 21.2 82.8
(9.4) (19.2)

RG1000 20.6 83.9
(9.14) (19)

A/R/D 52.9 82.1
(18.09) (48)

D/R/A 53.0 81.5
(18.16) (47.2)

200 RG500 17.7 153.2
(4.39) (30.6)

RG1000 17.4 153.9
(3.55) (30.1)

A/R/D 94.0 208.2
(32.47) (72.9)

D/R/A 94.7 207.8
(32.58) (72.9)
Each search approach requires an initial topology. We randomly
generate initial acyclic networks. The initial random network is the
same for each search approach for a given test. That is, when infer-
ring network 1, all six searchers begin with the same initial struc-
ture. To infer network 2, a different random topology is used to
initialize all six searchers.

Several performance metrics are computed and compared for
each search technique including: PPV, SE, BDe score, and computa-
tion time. Note that the BDe score is the basis for network scoring
and thus the evaluation function that drives all search techniques.
If the DNES approach is successful, then it should find higher BDe
scores than the alternative techniques. PPV and SE are reported
in terms of both directed and undirected network evaluations.
PPVU and SEU denote the PPV and SE with respect to an undirected
topology, whereas PPVD and SED correspond to a directed graph.
That is, suppose edge ði; jÞ is in Network 1, if a searcher infers edge
ðj; iÞ, this would be considered a true positive when computing
PPVU and SEU, but a false positive in the PPVD and SED calculation.

3. Results and discussion

The four hill climbing variations in the experimentation are ran-
dom greedywith 500 or 1000 restarts (denoted RG500 and RG1000,
respectively) and local greedy with 500 or 1000 restarts (denoted
LG500 and LG1000, respectively). The two orders for the DNES
search are denoted A/R/D and D/R/A. Using this notation, the aver-
Directed Edges

FN TP FP FN

231.0 3.4 136.1 235.0 139.5
(119.7) (2.39) (53.5) (121.2) (54.4)
227.2 3.7 137.2 230.9 140.9

(118.9) (2.65) (54.1) (120.5) (55.4)
213.5 15.9 114.4 222.5 130.2

(111.6) (8.39) (25.4) (115.0) (27)
214.4 15.0 114.5 223.4 129.5

(112.7) (8.52) (25.6) (115.9) (27)
179.7 46.1 128.6 192.3 174.7

(111.5) (18.53) (58.4) (113.9) (53.9)
179.4 46.8 127.0 191.6 173.8

(109.9) (19.16) (57.6) (112.9) (53.8)
518.2 13.0 209.1 527.9 222.0

(235.8) (5.36) (33.5) (238.8) (33.6)
518.7 12.7 210.0 528.1 222.7

(236.5) (4.87) (31.9) (239.5) (32.1)
427.9 90.7 282.2 450.1 372.9

(223.7) (33.29) (97.0) (228.9) (95.1)
428.2 90.0 282.1 450.8 372.1

(224.0) (33.31) (98.0) (228.8) (94.7)

231.7 3.1 116.1 235.4 119.2
(119.2) (2.3) (43.9) (120.8) (44.5)
227.8 3.1 121.8 231.5 125.0

(118.5) (2.32) (47.3) (120.1) (47.8)
216.5 14.5 89.5 223.9 104.0

(113.9) (6.68) (19.8) (116.7) (20.2)
217.3 13.7 90.8 224.8 104.4

(115.2) (6.7) (19.2) (117.2) (18.8)
184.5 42.5 92.5 195.9 135.0

(110.1) (17.01) (50.0) (113.4) (43.1)
184.4 42.4 92.1 196.0 134.4

(110.2) (16.84) (49.3) (113.6) (42.6)
389.8 9.8 161.2 398.4 170.9
(94.0) (2.49) (30) (93.7) (29.7)
390.2 9.9 161.4 398.3 171.3
(94.2) (1.89) (29.7) (94.5) (29.3)
444.5 76.0 226.2 464.9 302.2

(221.8) (29.55) (75.8) (225.9) (74.6)
443.8 76.3 226.2 464.6 302.5
(222) (29.45) (75.9) (226.2) (74.7)
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age PPVU, SEU, PPVD, SEU, BDe, computational time in seconds, and
total number of networks searched are reported in Table 3 for the
benchmark data from [5]. Table 4 also reports information specific
to the average number for TP, FP, and FN for the undirected and
directed evaluations as well as the total number of edges in the
inferred topology. In both Tables 3 and 4, the standard deviations
of the various metrics are listed in parentheses below the associ-
ated mean values. Recall that each summary statistic is associated
with the results of experimentation on 20 networks.
0.000

0.001

0.002

−2500 −2000

BDe

Fig. 6. Estimated densities of BDe scores

0.000

0.001

0.002

0.003

0.004

−2000 −1750 −1500
BDe

Fig. 7. Estimated densities of BDe sco
Tables 5 and 6 report similar results for the tests on the GNW
data which is also broken out by type of experimentation simu-
lated: knockout or knockdown. Again, for Tables 5 and 6, the stan-
dard deviations are listed in parentheses below the mean values.
Since there are 20 subnetworks derived from E. coli and 20 derived
from S.cerevisiae for each setting (100 or 200 nodes), the means and
standard deviations correspond to search results performed on 40
networks. Note that in these tables, results are not reported using
the local greedy approaches for the 200 GNW gene networks. After
−1500 −1000

Search
Technique

RG500
LG500
D/R/A

for 100 gene benchmarks from [5].

−1250 −1000

Search
Technique

RG500
LG500
D/R/A

res for 100 gene GNW networks.
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initial analysis, the LG500 and LG1000 run times were observed to
exceed 20 min for every test and the performance metrics were
consistently poor. Whether this is an issue related to memory
usage or simply poor performance of the local greedy method we
cannot say. Intuitively, on larger networks, the performance of
local greedy approaches will suffer since at each iteration the local
neighborhoods must be evaluated exhaustively.

The 10 gene test results in Table 3 demonstrate that the DNES
techniques search far fewer candidate networks (three orders of
magnitude less) than the greedy heuristic methods for these rela-
tively simple problems. However, after examining only about 1,000
networks, the PPV values and BDe scores are comparable to those
found by the greedy methods which searched through more than
1.5 M possible topologies. A similar pattern occurs in the more
interesting and larger 100 gene networks. The DNES techniques
search through a fraction of the number of networks (in a fraction
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

−2800 −
BDe

Fig. 8. Estimated densities of BDe sco

Table 7
Paired performance differences on benchmark data from [5].

Genes Techniques Undirected

PPVU SEU TP P

10 A/R/D – RG500 0.06 �0.04 �0.7 �
(0.11) (<0.01) (<0.01) (0

D/R/A – RG500 0.05 �0.04 �0.6 �
(0.25) (0.01) (0.02) (0

RG500 – LG500 0.00 0.00 0.00 �
(0.91) (0.98) (1.00) (0

A/R/D – D/R/A 0.01 0.00 �0.1 �
(0.34) (0.58) (0.43) (0

100 A/R/D – RG500 0.00 0.03 25.1 0
(0.20) (<0.01) (<0.01) (0

D/R/A – RG500 0.00 0.03 25.1 0
(0.15) (<0.01) (<0.01) (0

RG500 – LG500 0.65 0.00 3.9 0
(<0.01) (0.12) (0.12) (<

A/R/D – D/R/A 0.00 0.00 0.00 �
(0.32) (1.00) (1.00) (0
of the time) to obtain comparable or better scores in all the
reported statistics.

The 100 gene experiments show that the random greedy and
DNES methods produce results with high PPV values for the undi-
rected graphs. As expected, the PPVD values are notably less than
the PPVU values. The local greedy techniques perform poorly with
respect to both PPVU and PPVD. This is possibly due to the emphasis
on local searching over wider exploration during even the earliest
iterations: it is unlikely that the initial random solutions are near
‘‘good” solutions. The overall lower sensitivities observed for all
techniques is consistent with literature when no prior knowledge
is incorporated [5,45].

Tables 3 and 4 reveal that the 500 additional random restarts
used in the greedy approaches has limited impact. This is espe-
cially true for the local greedy searches in which the LG500 and
LG1000 results have nearly identical values for every performance
2400 −2000

Search
Technique

RG500
D/R/A

res for 200 gene GNW networks.

Directed Edges BDe Time

PVD SED TP

0.04 �0.03 �0.5 �1.5 0.2 �1.51
.65) (0.20) (0.22) (<0.01) (0.62) (<0.01)
0.01 �0.02 �0.4 �1.3 0.9 �1.51
.94) (0.33) (0.33) (<0.01) (0.17) (<0.01)
0.04 �0.01 �0.1 �0.25 �0.01 �0.45
.49) (0.51) (0.49) (0.17) (0.75) (<0.01)
0.03 �0.01 �0.1 �0.2 �0.6 0.00
.37) (0.51) (0.54) (0.21) (0.28) (0.58)

.00 0.02 16.0 30.1 97.5 �14.01

.99) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)

.01 0.02 16.0 29.9 100.4 �14.00

.70) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)

.41 0.00 3.5 �67.8 217.5 �50.71
0.01) (0.03) (0.03) (<0.01) (<0.01) (<0.01)
0.01 0.00 �0.1 0.2 �2.9 �0.06
.29) (0.86) (0.86) (0.48) (0.23) (0.51)
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metrics except time and the number of networks searched. Table 5
shows that for both knockout and knockdown experiments, for
both 100 and 200 gene networks, and for both directed and undi-
rected metrics, the DNES methods obtain the largest means values
of PPV and SE. The inferred topologies have both higher average
true positives and generally have more edges as seen in Table 6.
Both neighborhood orderings of the DNES techniques produce
comparable performance metrics and network sizes.

A key element of interest is the shift which occurs regarding the
total number of networks searched and computation time for the
DNES methods. For the 200 gene networks, DNES evaluates for
more networks than the random greedy techniques. We expect
this to be due to one or more factors which are discussed in the
conclusion.

The mean BDe values associated with DNES in Table 5 are con-
sistently the least negative across the experiments. Figs. 6–8 depict
the density of the BDe scores for a subset of the search techniques
(LG500, RG500, and D/R/A) for 100 gene data from [5], the 100
gene GNW data, and the 200 gene GNW data, respectively. Fig. 6
shows that for the simulated data from [5] there is overlap of
BDe scores achieved by the D/R/A method and the two greedy
approaches. The separation among all three distributions improves
when analyzing the more realistic GNW data. Fig. 7 shows that D/
R/A is likely to be statistically superior to either of the greedy
methods shown for the 100 gene GNW data. For the larger 200
gene networks, the densities in Fig. 8 are clearly separated and
D/R/A produces the better BDe values. Statistical comparisons of
the D/R/A performance with both the RG500 and the A/R/D perfor-
mance data follow.

Four approaches are selected for statistical analysis: RG500,
LG500, A/R/D, and D/R/A. The RG1000 and LG1000 approaches
are excluded since the additional restarts did little if anything to
improve the performance metrics. A paired t-test is used since each
of the heuristic approaches were tested with the same input (i.e.,
gold standard network, expression file, random initial structure)
Table 8
Paired performance differences on GNW data.

Experiment Genes Techniques Undirected

PPVU SEU TP

Knockout 100 A/R/D – RG500 0.17 0.17 33.2
(<0.01) (<0.01) (<0.01)

D/R/A – RG500 0.17 0.17 33.6
(<0.01) (<0.01) (<0.01)

RG500 – LG500 0.13 0.07 17.1
(<0.01) (<0.01) (<0.01)

A/R/D – D/R/A 0.00 0.00 �0.4
(0.21) (0.76) (0.48)

200 A/R/D – RG500 0.21 0.19 88.7
(<0.01) (<0.01) (<0.01)

D/R/A – RG500 0.21 0.18 88.3
(<0.01) (<0.01) (<0.01)

A/R/D – D/R/A 0.00 0.00 0.4
(0.96) (0.49) (0.65)

Knockdown 100 A/R/D – RG500 0.22 0.16 31.7
(<0.01) (<0.01) (<0.01)

D/R/A – RG500 0.22 0.16 31.8
(<0.01) (<0.01) (<0.01)

RG500 – LG500 0.15 0.06 14.63
(<0.01) (<0.01) (<0.01)

A/R/D – D/R/A 0.00 0.00 �0.1
(0.62) (0.73) (0.78)

200 A/R/D – RG500 0.22 0.18 71.8
(<0.01) (<0.01) (<0.01)

D/R/A – RG500 0.22 0.18 72.5
(<0.01) (<0.01) (<0.01)

A/R/D – D/R/A 0.00 0.00 �0.7
(0.10) (0.08) (0.12)
and as such the experiment should be evaluated as a repeated
measure. Tables 7 and 8 report the results of the paired t-tests
among the four techniques for several metrics of interest. The aver-
age paired differences (A/R/D � RG500, D/R/A � RG500, RG500 �
LG500, and A/R/D � D/R/A) for PPVU; SEU, undirected TP,
PPVD; SED, directed TP, the number of edges inferred, BDe score,
and the computation time in seconds are recorded. Table 7 relates
the results on the benchmark data from [5] and Table 8 presents
the results from the GNW analysis. A positive value indicates that
the first technique obtains a higher value for the given metric. The
p-value, listed in parentheses below the mean of the differences for
each metric, reflect the statistical significance of the value. If a
p-value is below 0.05 we will refer to the results as statistically
significant. For example, consider the PPVU metric for the 10 gene
A/R/D � RG500 paired analysis. The value of 0.06 indicates that the
A/R/D was observed to have better PPVU values in the paired com-
parison with RG500, however the p-value of 0.11 indicates this
observed difference is not statistically different from 0.

Tables 7 and 8 confirm that the BDe scores from both A/R/D and
D/R/A are statistically superior to the RG500 search heuristic for all
tests conducted on the 100 gene or 200 gene sized networks.
Table 8 shows that the DNES methods produce statistically better
PPVU, PPVD, SEU, and SED values for all the GNW experimentation.
The DNES inferred topologies are also larger (contain more edges)
and have more directed and undirected true positives. With
regards to comparing performances of the two neighborhood
orderings for DNES, Tables 7 and 8 shows there is no significant dif-
ference in any metrics between the orderings.

4. Conclusion

In this study we introduce a search heuristic, DNES, to be used
as the metaheuristic search component of an inference algorithm
to improve the quality of reverse engineered GRNs without com-
promising the fast computation times of the standard greedy
Directed Edges BDe Time

PPVD SED TP

0.17 0.15 30.3 44.5 130.4 �8.31
(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)
0.17 0.15 31.0 43.6 132.3 �8.24

(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)
0.10 0.05 12.5 �9.2 506.9 �43.55

(<0.01) (<0.01) (<0.01) (0.29) (<0.01) (<0.01)
0.00 0.00 �0.7 0.85 �1.8 �0.07
(0.06) (0.28) (0.11) (0.22) (0.19) (0.43)
0.20 0.16 77.7 150.88 688.8 88.29

(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)
0.20 0.16 77.1 150.13 689.9 78.63

(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)
0.00 0.00 0.7 0.75 �1.1 9.66
(0.59) (0.13) (0.36) (0.35) (0.55) (0.01)

0.21 0.14 28.0 31.0 107.5 �9.35
(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)
0.21 0.14 27.9 30.48 109.1 �9.29

(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)
0.12 0.05 11.43 �15.23 447.44 �45.22

(<0.01) (<0.01) (<0.01) (0.02) (<0.01) (<0.01)
0.00 0.00 0.1 0.53 �1.6 �0.06
(0.98) (0.96) (0.82) (0.16) (0.21) (0.48)
0.20 0.16 61.8 118.2 496.1 14.98

(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (0.12)
0.20 0.16 62.0 119.0 493.3 15.49

(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (0.14)
0.00 0.00 �0.3 �0.33 �0.7 �1.80
(0.50) (0.35) (0.46) (0.74) (0.64) (0.27)
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search technique. The empirical analysis, which leverages a Baye-
sian network scoring algorithm, demonstrates that stochastic
greedy approaches (i.e., RG500 and RG1000) significantly outper-
form the deterministic greedy approaches (LG500 and LG1000)
which exhaust the local search space. High quality solutions are
unlikely to be close in proximity to the initial solution and there-
fore movement through the search space is a vital component.

DNES combines elements of both stochastic and deterministic
greedy techniques. In the first phase it randomly chooses a local
point for exploration and then exhaustively searches the local
space of this point to improve on solution quality. This combina-
tion of exploration and exploitation is demonstrated as an effective
method for discovering better topologies. Additionally, DNES elim-
inates the need for random restarts to find good solutions. The sys-
tematic switching of neighborhood structures allows the search
procedure to escape local optima. DNES finds better quality solu-
tions than the four hill climbing with random restarts implementa-
tions analyzed. The current implementation of DNES as a
modification to Banjo is available at http://oklahomaanalyt-
ics.com/software-research-data.

The empirical analysis reveals that an increase in the number of
networks explored does not guarantee better results. The LG500
implementation evaluates an average of over 5 million networks
for the 100 gene experiments yet under performs RG500 which
evaluates about half as many. For the 100 gene GNW experiments,
DNES evaluates a fraction of these quantities and produces better
inferred topologies. The simultaneous reduction in the number of
network evaluations and improvement in solution quality demon-
strates that the search space can be explored more effectively with
an intelligent partitioning of the search moves. Dividing the single
hill climbing neighborhood into three separate structures and
using a combination of systematic and stochastic evaluations
results in better BDe values, comparable positive predictive values,
and improved sensitivity.

The issue regarding the relatively large DNES searches with the
GNW 200 gene may be due to one or more factors. The first is that
Banjo is over restricting the random greedy search for the RG500
and RG1000 methods and they are terminating too soon. However,
since there is little to no improvement when the restarts are incre-
mented from 500 to 1000 restarts, it simply may be that an unre-
stricted searcher will not be productive. The second potential
factor is that as the networks increase in size, the DNES neighbor-
hoods do as well. The local search component of DNES is an
exhaustive search. If the local search neighborhood is defined to
be too broad, then the number of topologies examined may
increase dramatically. The local greedy techniques demonstrate
that exhaustive, deterministic searching can be problematic. How-
ever, the unrestricted DNES algorithm appears to be productive so
far. The increased quantity of networks searched allowed DNES to
find statistical superior topologies.

While other advanced metaheuristics may outperform the
greedy techniques in terms of quality, they are not used in practice
because of the computational burden. Yu et al. [15] compared sim-
ulated annealing, a genetic algorithm, and hill climbing with 100
random restarts and concluded the greedy approach was the most
practical because of the comparable output and the computation
time was a fraction of the other techniques. DNES, however, consis-
tently terminates faster than the greedy approaches on 100 gene
networks evaluated and was only seconds slower than RG500 for
the 200 gene networks. It seems that the simple idea of dividing
the typical neighborhood definition into three distinct neighbor-
hoods and using a combination of stochastic and deterministic
searches perform very well. The algorithm is simply to implement
and requires no tuning parameters (unlike genetic algorithms).
DNES does not even require identifying the appropriate number
of restarts. The method we propose is simple, produces better qual-
ity solutions than hill climbing with restarts, and has practical and
promising search times.
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