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ABSTRACT
Theory, methodology, and applications of risk analysis contribute to the quantification and 
management of resilience. For risk analysis, numerous complementary frameworks, guidelines, 
case studies, etc., are available in the literature. For resilience, the documented applications are 
sparse relative to numerous untested definitions and concepts. This essay on resilience analytics 
motivates the methodology, tools, and processes that will achieve resilience of real systems. The 
paper describes how risk analysts will lead in the modeling, quantification, and management of 
resilience for a variety of systems subject to future conditions, including technologies, economics, 
environment, health, developing regions, regulations, etc. The paper identifies key gaps where 
methods innovations are needed, presenting resilience of interdependent infrastructure networks as 
an example. Descriptive, predictive, and prescriptive analytics are differentiated. A key outcome will 
be the recognition, adoption, and advancement of resilience analytics by scholars and practitioners 
of risk analysis.

1.  Introduction

Recent natural disasters have challenged our traditional 
approaches of planning for and responding to disruptive 
events. For example, Hurricane Sandy affected eight coun-
tries and U.S. states from Florida to Maine in October 
2012 with property damage in the U.S. around $50 billion. 
At least 650,000 houses were damaged (Porter, 2013), and 
tens of thousands of people were left homeless in the wake 
of the storm (Barron, Lipton, & Rivera, 2012). Months 
after the storm, power had not been restored to many 
communities in the New York/New Jersey/Connecticut 
area (Manual, 2013).

Hurricane Sandy disabled the physical infrastructure 
networks that enable the heavily populated NY/NJ area 
to operate, including roads, public transit, electric power, 
and telecommunications. For example, one million cubic 
yards of debris was removed following Hurricane Sandy, 
much of which was impeding transportation networks 
(Lambert, Tsang, & Thekdi, 2013; Lipton, 2013). These 
physical infrastructures are aging and increasingly fragile 
(e.g. the ASCE report card rating U.S. infrastructure with 

a grade of ‘D’ American Society of Civil Engineers, 2013) 
and subject to breakdown, with massive consequences on 
the services, and ultimately the communities, that rely 
upon them. Combined with the potential that climate 
change will result in more frequent and severe storms, 
addressing resilience of interdependent infrastructure 
networks is all the more critical.

Hurricane Sandy demonstrated how disruptions to 
infrastructure networks can impact a variety of other net-
works, including, in particular, the community networks 
and service networks that interact with and depend on 
infrastructure networks to function properly. Figure 
1 illustrates the interdependencies among these three 
network types. Infrastructure networks are defined as 
engineered cyber-physical systems that enable essential 
‘lifeline’ services for society (e.g. transportation, electric 
power, communications). Service networks are defined 
as human systems that engage with these infrastructure 
systems during a disruption (e.g. emergency responders, 
humanitarian relief, debris removal) to enable the func-
tion of other networks. Community networks are defined 
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data are increasingly recognized as important by com-
munity leaders across the nation. Data.gov, the central 
site for U.S. Government data, reports that there are 96 
U.S. States, State related agencies, Cities, or Counties with 
‘open data’ web sites (Open Government – Data.gov, n.d.), 
each of which contains many data-sets corresponding to 
a wide range of service, community, and infrastructure 
information. For example, in April 2013, the New York 
City Mayor’s Office of Data Analytics was established to 
create a ‘big data’ warehouse to capture the data streams 
from 911/311 services, energy, and telecommunications 
statuses, and restoration crews, among others. Recently 
efforts like these have become part of ‘Smart Cities’ initi-
atives in which metropolitan areas capture data streams 
from a variety of sources, enabling monitoring of city 
environments. Although some of these efforts involve 
cities becoming more responsive to citizen demands and 
more efficient use of tax dollars, other uses can be seen to 
contribute toward building resilience. A variety of data 
sources, such as video from CCTV cameras, voice, social 
media, streaming data, sensor logs, traditional structured, 
and unstructured data can be fused together to support 
these efforts. This availability of data has the potential to 
inform decisions through the application of advanced ana-
lytical methods, or analytics, thereby improving resilience. 
As we define resilience as the ability to adapt to changing 
conditions and withstand and rapidly recover from dis-
ruption, it is essential for communities to gather baseline 
data about the systems and conditions within their envi-
ronments, to receive alerts when normal thresholds are 
exceeded, and to visualize the progress toward recovery. 
Monitoring enables awareness, increased community 
resilience is made possible through increased awareness 
coupled with the ability to intervene in these systems at 
appropriate moments to reduce impact and duration of 
crises and increase system flexibility and durability.

A focus on resilience through data analytics has entered 
the national stage in the U.S. In 2012, the White House 
announced new initiatives in big data and announced 
more than $200 million in new commitments for big 
data research, thus making big data research a national 
priority (White House, 2012). We define big data to be 
extremely large data-sets that may be analyzed compu-
tationally to reveal patterns, trends, and associations, 
especially relating to human behavior and interactions. 
In 2012, Gartner (Gartner, 2012) updated its definition 
as follows: ‘Big data is high volume, high velocity, and/or 
high variety information assets that require new forms of 
processing to enable enhanced decision-making, insight 
discovery, and process optimization. Big data represents 
the information assets characterized by such a high vol-
ume, velocity, and variety to require specific technology 
and analytical methods for its transformation into value.’ 

as the interconnected society that the other networks sup-
port (e.g. relationships among people and communities). 
The resilience of one of these networks can affect the resil-
ience of another, and the data generated for one network 
can potentially help us to understand the performance 
of another.

While interconnectivities of cyber-physical-social net-
works are essential (e.g. the effectiveness and efficiency of 
service networks, such as emergency response, relies on 
physical networks, such as transportation and communi-
cations), interdependency makes them more vulnerable to 
disruptions and subject to cascading effects (Vespignani, 
2010). Recognizing the inevitability of large-scale disrup-
tions, emphasis has shifted from prevention to protection 
to resilience, or to ‘the ability to adapt to changing con-
ditions and withstand and rapidly recover from disrup-
tion.’ This ‘inevitability’ has been demonstrated too often 
in the last decade. For example, in addition to Hurricane 
Sandy previously discussed, the August 2003 U.S. black-
out caused transportation and economic network dis-
ruptions (Minkel, 2008), Hurricane Isabel devastated the 
transportation system of the Hampton Roads, VA, region 
in 2003 and overwhelmed emergency response (Smith & 
Graffeo, 2005), and the 2011 9.0 magnitude earthquake 
and Tsunami that struck Japan disrupted global supply 
chain networks (MacKenzie, Santos, & Barker, 2012), 
among many others.

Data describing the performance of such cyber-phys-
ical-social networks are particularly important before, 
during, and after a large disruption like Hurricane Sandy 
because of the central role these networks play in sup-
porting the society’s resilience as a whole. These data may 
come from sensors embedded in the physical infrastruc-
ture, or from cameras which monitor system performance, 
but they also may be generated at the service network level 
in such forms as data feeds from emergency services oper-
ations, or at the community network level in such forms as 
social media posts. Collecting, storing, and analyzing such 

Figure 1.  Interdependencies of infrastructure networks, with 
relationships of service and, ultimately, community networks.



SUSTAINABLE AND RESILIENT INFRASTRUCTURE﻿    61

For the purposes of this work, big data can be character-
ized as coming from static sensors informing the power 
network, water utility, and transportation network, among 
others. It can also be sees as arising from dynamic sensors, 
such as mobile devices, vehicles, and air/water sensors. 
Lastly it can be found in digital traces via internet-based 
action, social media, and direct contributions from par-
ticipants (De Mauro, Greco, & Grimaldi, 2016). In August 
of 2015 Siddhartha (Sid) Dalal, the Chief Data Scientist 
and Senior Vice President at AIG, stated in a talk to the 
American Statistical Association that new methodologies 
and technologies are enabling the collection and analysis 
of data to enhance real-time probabilistic risk analysis and 
global resilience (AMSTAT News, 2015). This emerging 
paradigm can enable agencies to more effectively manage 
risks associated with complex systems. Dalal stated that 
statistical models are playing an increasingly important 
role in risk analysis, resilience, and helping the United 
States and other countries around the globe mitigate 
the effects of natural and man-made disasters. Big data 
research continues to be a national research priority due to 
its potential to transform how our quality of life by better 
managing risks from natural disasters and other events 
(White House, 2014).

Due to the interconnectedness of the cyber-physi-
cal-social infrastructure networks, there is opportunity 
to examine their overall interdependent structure from 
a number of different perspectives, and to leverage the 
availability of different types of data sources in order to 
do so. For example, data from physical infrastructure 
networks can be used both to support the operations of 
the service networks and to directly provide the commu-
nity networks with valuable information about damage 
to roads or bridges. Similarly, service network data can 
provide information to both the community networks and 
the infrastructure networks about ongoing recovery oper-
ations, such as debris removal. There is also opportunity 
for community networks to support both infrastructure 
and service network resilience.

Guikema (2009) has argued that techniques of analytics 
can play an important role in infrastructure risk analysis 
but have limitations in predicting future behaviors based 
on past disruptive events. However, the growing availabil-
ity of social media data and new techniques for analyzing 
these data introduce a number of interesting possibili-
ties with respect to characterizing and managing resil-
ience in this interconnected environment. For example, 
it may now be possible to gather data from static sensors 
about power outages, from service delivery responders 
as to power system repair, from social media as to the 
human experience of power outages, and from 911/311 
calls concerning power outages causing secondary crises, 
all in near real-time. These data can be fused, geolocated, 

and visualized to provide improved situational awareness 
to city and emergency managers. Among other recent 
technologies, machine learning, data mining, and natu-
ral language processing have made leaps in extracting, 
processing, and classifying micro-blogged feeds, including 
detecting disruptions (Sakaki, Okazaki, & Matsuo, 2010), 
propagating rumors and misinformation (Mendoza, 
Poblete, & Castillo, 2010), assessing damage (Cresci, 
Tesconi, Cimino, & DellOrletta, 2015; Imran, Castillo, 
Lucas, Meier, & Vieweg, 2014), identifying needs (Caragea 
et al., 2011), analyzing sentiments (Caragea, Squicciarini, 
Stehle, Neppalli, & Tapia, 2014; Nagy & Stamberger, 2012), 
and identifying emotions (Schulz, Thanh, Paulheim, & 
Schweizer, 2013). These and other innovative methodol-
ogies will be essential for mining disaster data and help to 
characterize infrastructure and community networks, as 
well as to guide service networks, in the coming decade.

According to Meier (2013), disaster-affected commu-
nities are increasingly becoming the source of big (cri-
sis) data during and following major disasters.  During 
Hurricane Sandy over 20  million  tweets were posted. 
Five thousand tweets were posted every second during 
the earthquake and subsequent Tsunami in Japan in 2011, 
resulting in 1.5 million tweets every five minutes. Meier 
(2013) finds that due to this surge in big social media 
data we now have the opportunity to better characterize, 
in real-time, the social, economic, and political processes 
that provide structure to our society. He described the rise 
of social media as a new nervous system for the planet, 
capturing the pulse of our social systems. However, the 
tools to leverage this massive amount of data to measure 
and support societal resilience have lagged behind the 
generation and widespread availability of social media 
data. We acknowledge that social media data have been 
leveraged to aid recovery and response efforts, however, 
these efforts have been ad hoc and piecemeal, largely 
driven by individuals (Gary, 2011).

2.  Resilience analytics

With the above in mind, we define resilience analytics to 
be the systematic use of advanced data-driven methods 
to understand, visualize, design, and manage interde-
pendent infrastructures to enhance their resilience and 
the resilience of the communities and services that rely 
upon them. The following discussion seeks specifically to 
characterize the role of social media data within the new, 
broader concept of resilience analytics, in order to argue 
for new frameworks for resilience of large-scale systems 
from a data-centric viewpoint. We begin by defining 
resilience in the context of cyber-physical-social infra-
structure networks, and then consider the role of social 
media analytics in characterizing and enabling resilience 
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present information to have a greater understanding of 
existing conditions and how they will change over time.’ 
(ESRI, 2008) Government agencies and response partners 
work to establish and maintain situational awareness to 
sustain general communications, gather intelligence from 
the field, execute logistical plans, track resources, send 
alerts and warnings, and perform general operations. If 
integrated with traditional data, social media can also 
help resilience planners achieve and maintain situational 
awareness in real-time.

While popular definitions for analytics vary, a com-
mon theme is that analytics inherently leverages data 
– and more often than not, large, unwieldly data. Laney 
(2001) introduced three dimensions of challenges for 
big data analytics. Volume denotes the vast size and 
scale of the data. The velocity dimension refers to the 
speed at which data is being created, which leads to the 
challenge of developing computing systems and algo-
rithms that can cope with how fast new data is being 
created and somehow analyze it in near real-time. The 
third dimension of the big data challenge is variety, 
that is, data comes from many sources and in many 
forms. This includes sensor data, satellite imagery, 
video feeds, and social media updates: sources of data 
that one would expect to be collected before, during, 
and after a disruptive event. The ability to fuse these 
sources into commensurate data feeds (e.g. appropriate 
measurement scales, time frames, data granularity) is 
a non-trivial effort that adds complexity to the already 
difficult task of data preparation (e.g. outlier analysis, 
missing value imputation, data transformation, feature 
engineering) to support advanced analytics. And such 
issues may only increase in magnitude as infrastructure 
networks and their data collection structures become 
more autonomous.

In addition to increased and improved monitoring of 
social media, the recent five years have seen the devel-
opment of numerous ‘crowdsourcing’ or ‘public partici-
pation’ technologies. Crowdsourcing is defined as a type 
of participative online activity in which an individual, 
an institution, a non-profit organization, or company 
proposes to a group of individuals of varying knowl-
edge, heterogeneity, and number, via a flexible open call, 
the voluntary undertaking of a task (Estellés-Arolas & 
González-Ladrón-de-Guevara, 2012). Crowdsourcing 
takes advantage of Internet technologies and networks 
as well as the access, intelligence, knowledge, and time of 
participants. These new tools leverage networked digital 
technologies to enable scientists to bring research prob-
lems to non-scientists for participation and engagement, 
thus harnessing a distributed networked labor force. This 
distributed networked labor force may also come from 
new sectors of the population as the numbers of elders 

in such interdependent infrastructure networks through 
the use of descriptive, predictive, and prescriptive tech-
niques. Following a look at practical considerations, 
such as data collection and management, we expand our 
focus again to position social media-driven data analyt-
ics within the wider framework of the different types of 
data that our interdependent physical, service, and social 
networks will increasingly generate as they continue to 
co-evolve.

The ability to withstand, adapt to, and recover from a 
disruption is generally referred to as resilience, a defini-
tion with which many would largely agree (Aven, 2011; 
Ayyub, 2013; Haimes, 2009; Obama, 2011). Resilience 
is a concept that is increasingly gaining traction in gov-
ernment, industry, and academia (Hosseini, Barker, & 
Ramirez-Marquez, 2016; Park, Seager, Rao, Convertino, 
& Linkov, 2013). With respect to critical infrastructure, 
the Infrastructure Security Partnership (2011) noted 
that a resilient infrastructure sector would ‘prepare 
for, prevent, protect against, respond or mitigate any 
anticipated or unexpected significant threat or event’ 
and ‘rapidly recover and reconstitute critical assets, 
operations, and services with minimum damage and 
disruption.’

Regarding the ability of society to cope with a disrup-
tion, the National Institute of Standards and Technology 
(2015) defined community resilience as ‘the ability of a 
community to prepare for anticipated hazards, adapt to 
changing conditions, and withstand and recover rapidly 
from disruptions.’ It is determined by community capacity 
for collective action as well as its ability for problem-solv-
ing and consensus building to negotiate coordinated 
response (Walker, Sayer, Andrew, & Campbell, 2010). 
Several works have explored community and social resil-
ience from the perspective of social capital (the quan-
tity and quality of social resources upon which people 
draw in pursuit of livelihoods) (Aldrich, 2012; Elliott, 
Haney, & Sams-Abiodun, 2010; Frankenberger, Mueller, 
Spangler, & Alexander, 2013; Magis, 2010; Wilson, Wiebe, 
& Hoffmann, 2005) and with dynamic and spatial dimen-
sions (Béné, Wood, Newsham, & Davies, 2012; Norris, 
Stevens, Pfefferbaum, Wyche, & Pfefferbaum, 2008; Cutter 
et al., 2008). It is recognized that disruptive events tend 
to engage the community in social media activities, or ‘a 
conversational, distributed mode of content generation, 
dissemination, and communication among communi-
ties’ (Zeng, Hsinchun, Lusch, & Li, 2010). Meier (2013) 
strongly argues that social media can nurture social capital 
during disasters, in that by ‘providing norms, information, 
and trust, denser social networks can implement a faster 
recovery’ (Aldrich, 2012).

Situational awareness is a ‘human mental process that 
can be enhanced using technology to access, analyze, and 
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3.1.  Descriptive analytics

Descriptive analytics refers to techniques that effectively 
describe and possibly help to visualize the performance 
of the interdependent networks before, during, and after 
a disruptive event. In the case of the physical or oper-
ational characteristics of the infrastructure and service 
networks, baseline conditions can be easily characterized 
by gathering basic spatially explicit information, such as 
the location of nodes and links and their capacities in 
as-planned operating conditions, as well as infrastruc-
ture-related indicators of importance to particular regions 
(e.g. evacuation potential (in arterial miles/mi2 National 
Research Council, 2006), and housing age (% built 1970–
1994 Mileti, 1999). Information regarding the status of 
the infrastructure systems may be accessible real-time 
or near real-time during an event (e.g. neighborhoods 
with or without electric power service) and other data 
elements help to describe the longer-term infrastructure 
recovery (e.g. aerial imagery, number of new building 
permits issued, traffic data to help describe an improving 
transportation system). Both in the planning stages prior 
to a disruptive event and in the response phase after an 
event, the various service networks can be characterized 
by the numbers of crews available, amounts of resources 
(e.g. equipment, their dispatch locations, numbers of 
physicians Norris et al., 2008, shelter capacity Tierney, 
2009, and medical capacity Auf der Heide & Scanlon, 
2007). Baseline conditions for community networks can 
be described by spatially explicit populations and work 
locations, but also by indicators of resilient communities, 
such as: racial/ethnic inequality (difference in percent-
ages) (Cutter et al., 2008; Norris et al., 2008), educational 
inequality (Morrow, 2008; Norris et al., 2008), previous 
disaster experience (Cutter et al., 2008), and the social 
vulnerability index (Cutter et al., 2008; Morrow, 2008; 
Tierney, 2009). Such metrics can be tracked during the 
post-event time frame to help quantify and qualify the 
recovery with respect to the baseline.

Using social media analytics to assess changes after the 
onset of a disruptive event, however, involves gathering 
and analyzing more dynamic information than this from 
online discussions about community water, wastewater, 
roads, gas, transportation, electric power, and commu-
nication services. Social media data are an indicator of 
human perception of physical infrastructure systems, not 
indicators of the systems themselves. It is this difference 
that enables researches to compare the data from physi-
cal, social, and service indicators to see key differences. 
Changes in frequency and intensity of discussion after a 
disruption can be used to inform a new description of the 
interdependent networks on both the infrastructure net-
work level and service network level, and thus to provide a 

living long and well-passed retirement age increases. This 
population possesses the perfect trinity of socio-technical 
attributes leading to potentially excellent contributors to 
a crowdsourcing endeavor; i.e. they are highly educated, 
technical savvy, and have the luxury of free time (Beach 
& McKenzie, 2014; Kieboom, 2013). Crowdsourcing 
methods can be an effective proxy when physical sensor 
data are unavailable or misleading. Resilience analytics 
requires an understanding of how the emergent processes 
of crowd knowledge/labor and scientific discovery come 
together under the structures of networked computer 
platforms.

Social media data and crowdsourcing tools make it pos-
sible to facilitate descriptive, predictive, and prescriptive 
analytics, and thus enable researchers to better understand 
and enhance the behavior of interdependent networks 
after a disruptive event. Analytics is ultimately focused on 
improving decisions, and while data is required for facil-
itating analytics, data itself is not sufficient. The Institute 
for Operations Research and the Management Sciences 
(INFORMS) concisely defines analytics as ‘the scientific 
process of transforming data into insight for making better 
decisions.’ (INFORMS, 2015) Likewise, community resil-
ience can be improved only if better decisions are being 
made before, during, and after disasters.

3.  Research gaps

We offer several research directions for resilience ana-
lytics centered around the three perspectives commonly 
used to describe analytics: descriptive, predictive, and 
prescriptive analytics. Each of these perspectives plays 
a role in understanding the resilience of interdependent 
critical infrastructure networks, and some examples of 
the three perspectives of analytics are superimposed on 
the graphical depiction of interdependent networks in 
Figure 2.

Figure 2.  Descriptive, predictive, and prescriptive analytics to 
inform interdependent network behavior.
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Furthermore, the ability to predict how the perfor-
mance of one network impacts the performance of another 
enables the ability to predict how the resilience (or lack 
thereof) of one network may impact resilience in another. 
For example, this includes the scheduling of network 
recovery operations based on dependencies within the 
service network (e.g. certain equipment is needed by two 
crews at once) and interdependencies imposed by real-
time situations within the whole network (e.g. debris must 
be removed from transportation links before telecommu-
nication restoration can commence). This involves trading 
off the repair of different cyber-physical-social networks 
depending on the importance of particular networks and 
the importance of particular regions.

Further, a related area of techniques in diagnostic ana-
lytics can be used for causal analysis after a disruption to 
gain insight into why resilient behavior was not observed.

3.3.  Prescriptive analytics

While descriptive analytics relate to the current or his-
toric states of system, and predictive analytics attempt 
to quantify future states, prescriptive analytics provides 
guidance on how to achieve desirable outcomes. That is, 
given a set of potential interventions or strategies, pre-
scriptive analytics are mathematical tools that provide a 
quantifiable way of identifying and evaluating a feasible 
course of actions to best achieve specified objectives. 
The models involved in prescriptive analytics include 
optimization, stochastic optimization, simulation, and 
various hybrids of such approaches. Prescriptive analyt-
ics can guide pre-disaster resource allocation to reduce 
the potential effects of disruptive events as well as to 
aid post-disaster recovery efforts and priorities within 
the interdependent networks. For example, a growing 
prescriptive analytics problem lies in the recovery of 
infrastructure networks (e.g. the post-disaster schedul-
ing of restoration crews, and the removal of debris from 
transportation networks) (Aksu & Ozdamar, 2014; Celik, 
Ergun, & Keskinocak, 2015; Gonzalez, Duenas-Osorio, 
Sanchez-Silva, & Medaglia, 2016; Matisziw, Murray, & 
Grubesic, 2010; Nurre, Cavdaroglu, Mitchell, Sharkey, 
& Wallace, 2012). There are numerous complexities 
involved in even such a straightforward process, how-
ever, since limited resources can cause the diversion of 
funds from one area to another and result in significant 
trade-offs associated with engineering, political, and 
societal impacts. The ability to quantify these potentially 
conflicting impacts may be enhanced by the descriptive 
analytics capability. For example, the social vulnerability 
of certain neighborhoods within the broader commu-
nity could be used to inform the priorities in multiple 
objective optimization. The large uncertainties regarding 

more dynamic characterization of the networks than that 
offered by the baseline indicators. The crisis and recovery 
information volunteered through social network plat-
forms can also enable the formulation of a more detailed 
view of the interaction with the interdependent set of net-
works on the community network level, and it will provide 
a more complete picture of the community’s resilience 
over time than that given by the standard static indicators 
described above. This community-level information also 
allows for relating geographic regions to communities 
exhibiting ‘less-resilient’ characteristics through dynamic 
social media expressions of help-seeking behavior (e.g. 
emergency services, policing), threat, and response.

Given the nature of this problem domain, descriptive 
analytics entails effectively quantifying and communicat-
ing the various aspects of dynamic systems, including their 
performance metrics and the behavior of the individuals 
(e.g. residents, business owners, decision makers) affected 
by events, as well as the numerous uncertainties involved.

3.2.  Predictive analytics

Predictive analytics involves models that help to determine 
complex patterns and relationships among variables to 
quantify the likelihood of future events and thus reduce 
the associated uncertainty. Predictive analytics is enabled 
by the same type of data discussed in relation to descrip-
tive analytics. In traditional studies of engineering-based 
resilience, indicators typically measure the loss (e.g. ran-
dom forest models of hurricane-induced power outages 
Nateghi, Guikema, & Quiring, 2014) and subsequent 
recovery of resources (e.g. proportional hazards models 
of electric power recovery Barker & Baroud, 2014). There 
exists a need to combine these traditional measures with 
more modern, dynamic measures of community behavior 
that measure an increase in activity during times of crisis 
against a non-crisis benchmark. Essentially, there is a need 
to relate dynamic infrastructure behavior to what is being 
witnessed in the community, which thus provides a mean 
to predict community performance from infrastructure 
performance. For example, community sentiment is a 
function of how the individuals in the community are 
challenged by transportation or communication (or other) 
disruptions. Communities with different levels of racial 
diversity, income and education levels, and other demo-
graphics may be affected differently by similar infrastruc-
ture disruptions. Likewise, recovery and adaption may be 
unique given the socioeconomic characteristics of a com-
munity. Predictive analytics is an approach to transform 
what we know about our dynamic environment into vari-
ous models of how changes impact other components and 
behaviors and thereby uncover fundamental relationships 
within the interdependent system.
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which provides the opportunity to understand, forecast, 
and improve the performance of service networks using 
data from novel data types, such as social media and 
crowdsourcing.
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(real-time) scheduling of restoration crews can poten-
tially be reduced through an intelligent use of predictive 
analytics. Predictive models might be used to establish 
probabilities associated with completion times or crew 
availability as inputs to a stochastic optimization model. 
A compelling case, therefore, can be made for incorpo-
rating descriptive and predictive models within a unified 
decision-making paradigm.

Integrating perspectives of vulnerability and recover-
ability into the larger context of infrastructure network 
decision-making before, during, and after a disruptive 
event will help to support prescriptive decisions that lead 
to more resilient networks. Furthermore, accounting for 
community resilience will help to balance the dimensions 
of infrastructure network resilience with dimensions of 
social capital in the prescriptive models that are used to 
optimize investment decisions. This requires research into 
new data-driven interdependent network formulations, 
which are amenable to mathematical optimization and can 
benefit from both descriptive and predictive analytics to 
parameterize the model and to characterize uncertainty 
in the inputs.

4.  Concluding remarks

Resilience analytics has the potential to do much good 
for vulnerable and fragile communities, including how 
agencies prepare for and recover from disasters. Data 
cannot improve resilience on its own. Data needs to be 
transformed into information through modeling that 
ultimately is used to support decisions. Above, we have 
described ‘resilience analytics’ as the data-driven pro-
cess for supporting resilience through the application of 
descriptive, predictive, and prescriptive modeling.

Data may be derived from sensors that monitor 
cyber-physical systems, or they could come from a dif-
ferent, but growing, source: social media. According to 
Meier (2013), improving ways for communities to com-
municate internally and externally is an important part of 
building more resilient societies. This explains why social 
media and big data are central to growing more resilient 
societies, and understanding how resilient societies are 
strengthened by resilient physical infrastructure.

In summary, methodology should be central to society 
and community resilience. Analytics is ultimately focused 
on improved decision-making, and while data are a nec-
essary ingredient, data are not the end goal. To address 
resilience it is imperative that we understand how commu-
nities are affected by infrastructure and how infrastruc-
ture is affected by communities. Community and societal 
needs are central to resilience, and for this reason social 
aspects of recoverability need to be supported. This can be 
achieved through the use of advanced analytical methods, 



66   ﻿ K. BARKER ET AL.

Caragea, C., McNeese, N., Jaiswal, A., Traylor, G., Kim, H.-
W., Mitra, P., ... Yen, J. (2011). Classifying text messages 
for the Haiti earthquake. 8th International Conference on 
Information Systems for Crisis Response and Management, 
Lisbon.

Caragea, C., Squicciarini, A., Stehle, S., Neppalli, K., & Tapia, 
A. (2014). Mapping moods: Geo-mapped sentiment analysis 
during hurricane sandy. 11th International Conference on 
Information Systems for Crisis Response and Management, 
University Park, PA.

Celik, M., Ergun, O., & Keskinocak, P. (2015). The post-disaster 
debris clearance problem under incomplete information. 
Operations Research, 63, 65–85.

Cresci, S., Tesconi, A., Cimino, A., & DellOrletta, F. (2015). A 
ligustically-driven approach to cross-event damage assessment 
of natural disasters from social media messages. International 
World Wide Web Conference Committee (IW3C2), Florence.

Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., & Tate, E. 
(2008). A place-based model for understanding community 
resilience to natural disasters. Global Environmental Change, 
18, 598–606.

De Mauro, A., Greco, M., & Grimaldi, M. (2016). A formal 
definition of big data based on its essential features. Library 
Review, 65, 122–135.

Elliott, J. R., Haney, T., & Sams-Abiodun, P. (2010). Limits to 
social capital: Comparing network assistance in two new 
orleans neighborhoods devastated by Hurricane Katrina. 
Sociological Quarterly, 51, 624–648.

ESRI. (2008). Public safety and homeland security situational 
awareness. Retrieved from http://docplayer.net/2005281-
An-esri-white-paper-February-2008-public-safety-and-
homeland-security-situational-awareness.html

Estellés-Arolas, E., & González-Ladrón-de-Guevara, F. (2012). 
Towards an integrated crowdsourcing definition. Journal of 
Information Science, 38, 189–200.

Frankenberger, T., Mueller, M., Spangler, T., & Alexander, S. 
(2013). Community resilience: Conceptual framework and 
measurement feed the future learning agenda. Rockville, MD: 
Westat.

Gartner, Inc (2012). Big data. Retrieved from http://www.
gartner.com/it-glossary/big-data/

Gary, J. (2011). Alabama tornados: Twitter, facebook, other 
social media make a big mark in disaster response, relief. 
The Birmingham News.

Gonzalez, A. D., Duenas-Osorio, L., Sanchez-Silva, M., & 
Medaglia, A. L. (2016). The interdependent network design 
problem for optimal infrastructure system restoration. 
Computer-Aided Civil and Infrastructure Engineering, 31, 
334–350.

Guikema, S. D. (2009). Natural disaster risk analysis for critical 
infrastructure systems: An approach based on statistical 
learning theory. Reliability Engineering and System Safety, 
94, 855–860.

Haimes, Y. Y. (2009). On the definition of resilience in systems. 
Risk Analysis, 29, 498–501.

Hosseini, S., Barker, K., & Ramirez-Marquez, J. E. (2016). A 
review of definitions and measures of system resilience. 
Reliability Engineering and System Safety, 145, 47–61.

Imran, M., Castillo, C., Lucas, J., Meier, P., & Vieweg, S. (2014). 
AIDR: Artificial intelligence for disaster response. In 
Proceedings of the 23rd International Conference on World 
Wide Web, Seoul, South Korea.

Charles D. Nicholson is an assistant professor in the School 
of Industrial and Systems Engineering at the University of 
Oklahoma. His research interests are in complex network opti-
mization, machine learning, and in their intersection, espe-
cially as relates to resilient systems.

Cornelia Caragea is an assistant professor in the Department 
of Computer Science and Engineering at the University of 
North Texas, where she directs the Machine Learning Research 
Laboratory. Her research interests are in machine learning, 
information retrieval, and natural language processing to 
classify and aggregate tweets and text messages from disaster 
events.

ORCID

Charles D. Nicholson   http://orcid.org/0000-0002-7023-8802

References

Aksu, D. T., & Ozdamar, L. (2014). A mathematical model for 
post-disaster road restoration: Enabling accessibility and 
evacuation. Transportation Research Part E: Logistics and 
Transportation, 61, 56–67.

Aldrich, D. P. (2012). Building resilience: Social capital in post-
disaster recovery. Chicago, IL: University of Chicago Press.

American Society of Civil Engineers (2013). Report Card for 
America’s Infrastructure 2013. Retreived from http://www.
infrastructurereportcard.org/

AMSTAT News. (2015). Analytics for resilience: Improving 
global security through real-time analysis of complex risks. 
Retrieved April 7, 2016, from https://www.amstat.org/
newsroom/pressreleases/JSM2015-SPAIG-Dalal.pdf

Auf der Heide, E., & Scanlon, J. (2007). Health and medical 
preparedness and response. In W. L. Waugh & K. Tierney 
(Eds.), Emergency management: Principles and practice 
for local government (pp. 183–206). Washington, DC: 
International City Managers Association.

Aven, T. (2011). On some recent definitions and analysis 
frameworks for risk, vulnerability, and resilience. Risk 
Analysis, 31, 515–522.

Ayyub, B. (2013). Systems resilience for multihazard 
environments: Definition, metrics, and valuation for 
decision making. Risk Analysis, 34, 340–355.

Barker, K., & Baroud, H. (2014). Proportional hazards models 
of infrastructure system recovery. Reliability Engineering 
and System Safety, 124, 201–206.

Barron, J., Lipton, E., & Rivera, R. (2012). With $200 million 
in US housing aid, officials begin relocating the displaced. 
New York Times. Retrieved from http://www.nytimes.
com/2012/11/06/nyregion/housing-relocation-begins-
after-hurricane-sandy.html?_r=0

Beach, B., & McKenzie, D. (2014). Population ageing and 
the voluntary sector: Key figures and projected trends. 
Commission on the Voluntary Sector & Ageing, London, 
UK.

Béné, C., Wood, R. G., Newsham, A., & Davies, M. (2012). 
Resilience: New Utopia or New Tyranny? Reflection about the 
potentials and limits of the concept of resilience in relation to 
vulnerability reduction programmes. Brighton, UK: Institute 
for Development Studies.

http://docplayer.net/2005281-An-esri-white-paper-February-2008-public-safety-and-homeland-security-situational-awareness.html
http://docplayer.net/2005281-An-esri-white-paper-February-2008-public-safety-and-homeland-security-situational-awareness.html
http://docplayer.net/2005281-An-esri-white-paper-February-2008-public-safety-and-homeland-security-situational-awareness.html
http://www.gartner.com/it-glossary/big-data/
http://www.gartner.com/it-glossary/big-data/
http://orcid.org
http://orcid.org/0000-0002-7023-8802
http://www.infrastructurereportcard.org/
http://www.infrastructurereportcard.org/
https://www.amstat.org/newsroom/pressreleases/JSM2015-SPAIG-Dalal.pdf
https://www.amstat.org/newsroom/pressreleases/JSM2015-SPAIG-Dalal.pdf
http://www.nytimes.com/2012/11/06/nyregion/housing-relocation-begins-after-hurricane-sandy.html?_r=0
http://www.nytimes.com/2012/11/06/nyregion/housing-relocation-begins-after-hurricane-sandy.html?_r=0
http://www.nytimes.com/2012/11/06/nyregion/housing-relocation-begins-after-hurricane-sandy.html?_r=0


SUSTAINABLE AND RESILIENT INFRASTRUCTURE﻿    67

Nurre, S. G., Cavdaroglu, B., Mitchell, J. E., Sharkey, T. C., & 
Wallace, W. A. (2012). Restoring infrastructure systems: 
An integrated network design and scheduling problem. 
European Journal of Operational Research, 223, 794–806.

Open Government – Data.gov. (n.d.). Retrieved October 11, 
2015, from https://www.data.gov/open-gov/

Park, J., Seager, T. P., Rao, P. S. C., Convertino, M., & Linkov, 
I. (2013). Integrating risk and resilience approaches to 
catastrophe management in engineering systems. Risk 
Analysis, 33, 356–367.

Porter, D. (2013). Hurricane sandy was second-costliest in US 
history, report shows. Retrieved March 8, 2013, from http://
www.huffingtonpost.com/2013/02/12/hurricane-sandy-
second-costliest_n_2669686.html

Sakaki, T., Okazaki, M., & Matsuo, Y. (2010). Earthquake 
shakes twitter users: Real-time event detection by social 
sensors. In Proceedings of the 19th International Conference 
on World Wide Web, (pp. 851–860). Raleigh, NC.

Schulz, A., Thanh, T. D., Paulheim, H., & Schweizer, I. (2013). 
A fine-grained sentiment analysis approach for detecting 
crisis related microposts. 10th International Conference on 
Information Systems for Crisis Response and Management, 
Baden-Baden, Germany.

Smith, C. M., & Graffeo, C. S. (2005). Regional impact of 
Hurricane Isabel on emergency Departments in Coastal 
Southeastern Virginia. Academic Emergency Medicine, 12, 
1201–1205.

The Infrastructure Security Partnership. (2011). Regional 
disaster resilience guide for developing an action plan. 
Reston, VA: Technical Report, American Society of Civil 
Engineers.

Tierney, K. (2009). Disaster response: Research findings and 
their implications for resilience measures (CARRI Research 
Report 6). Oak Ridge: Community and Regional Resilience 
Institute.

Vespignani, A. (2010). Complex networks: The fragility of 
interdependency. Nature, 464, 984–985.

Walker, B., Sayer, J., Andrew, N. L., & Campbell, B. (2010). 
Should enhanced resilience be an objective of natural 
resource management research for developing countries? 
Crop Science, 50, S-10–S-19.

White House (2011). Presidential policy directive/PPD-8: 
National preparedness, Washington, DC: Department of 
Homeland Security.

White House. (2012). Obama administration unveils “Big 
data” initiative: Announces $200 million in new R&D 
investments, Press release. Office of Science and Technology 
Policy, Executive Office of the President, Washington, DC.

White House. (2014). Big data: Seizing opportunities, preserving 
values. Washington, DC: Executive Office of the President.

Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing 
contextual polarity in phrase-level sentiment analysis. 
In Proceedings of the Conference on Human Language 
Technology and Empirical Methods in Natural Language 
Processing, (pp. 347–354). Vancouver, BC. 

Zeng, D., Hsinchun, C., Lusch, R., & Li, S. (2010). Social media 
analytics and intelligence. IEEE Intelligent Systems, 25, 13–
16.

INFORMS (2015). What is analytics? Retrieved from https://
www.informs.org/About-INFORMS/What-is-Analytics

Kieboom, M. (2013). From problem to opportunity: 
Crowdsourcing the wise elders. The Wicked Notes #3.  
Retrieved from https://www.kl.nl/wp-content/uploads/ 
2014/04/wickednotes3.pdf

Lambert, J. H., Tsang, J., & Thekdi, S. (2013). Risk-informed 
investment for tropical cyclone preparedness of highway 
signs, signals, and lights. Journal of Infrastructure Systems, 
19, 384–394.

Laney, D. (2001). 3-D data management: Controlling data 
volume, velocity and variety. Stamford, CT: META Group.

Lipton, E. (2013, April 24). Cost of storm-debris removal in 
city is at least twice the US average. The New York Times.

MacKenzie, C. A., Santos, J. R., & Barker, K. (2012). Measuring 
international production losses from a disruption: Case 
study of the Japanese earthquake and tsunami. International 
Journal of Production Economics, 138, 293–302.

Magis, K. (2010). Community resilience: An indicator of social 
sustainability. Society and Natural Resources, 23, 401–416.

Manual, J. (2013). The long road to recovery: Environmental 
health impacts of hurricane sandy. Environmental Health 
Perspectives, 121, A152–A159.

Matisziw, T. C., Murray, A. T., & Grubesic, T. H. (2010). Strategic 
network restoration. Networks and Spatial Economics, 10, 
345–361.

Meier, P. (2013). What is big (crisis) data? Retrieved November 
13, 2015, from http://irevolution.net/2013/06/27/what-is-
big-crisis-data/

Mendoza, M., Poblete, B., & Castillo, C. (2010). Twitter under 
crisis: Can we trust what we RT? In Proceedings of the First 
Workshop on Social Media Analytics, Washington, DC.

Mileti, D. S. (1999). Disasters by design: A reassessment of 
natural hazards in the United States. Washington, DC: 
Joseph Henry.

Minkel, J. R. (2008, August 18). The 2003 Northeast blackout-five 
years later. Scientific American, www.scientificamerican.com

Morrow, B. (2008). Community resilience: A social justice 
perspective (CARRI Research Report 4). Oak Ridge: 
Community and Regional Resilience Institute.

Nagy, A., & Stamberger, J. (2012). Crowd sentiment detection 
during disasters and crises. 9th International Conference on 
Information Systems for Crisis Response and Management, 
Vancouver.

Nateghi, R., Guikema, S. D., & Quiring, S. M. (2014). Power 
outage estimation for tropical cyclones: Improved accuracy 
with simpler models. Risk Analysis, 34, 1069–1078.

National Institute of Standards and Technology. (2015). 
Community resilience planning guide for buildings and 
infrastructure systems. NIST Special Publication 1190.

National Research Council. (2006). Facing hazards and 
disasters: Understanding human dimensions. Washington, 
DC: National Academies Press.

Norris, F. H., Stevens, S. P., Pfefferbaum, B., Wyche, K. F., 
& Pfefferbaum, R. L. (2008). Community resilience as a 
metaphor, theory, set of capacities, and strategy for disaster 
readiness. American Journal of Community Psychology, 41, 
127–150.

https://www.data.gov/open-gov/
http://www.huffingtonpost.com/2013/02/12/hurricane-sandy-second-costliest_n_2669686.html
http://www.huffingtonpost.com/2013/02/12/hurricane-sandy-second-costliest_n_2669686.html
http://www.huffingtonpost.com/2013/02/12/hurricane-sandy-second-costliest_n_2669686.html
https://www.informs.org/About-INFORMS/What-is-Analytics
https://www.informs.org/About-INFORMS/What-is-Analytics
https://www.kl.nl/wp-content/uploads/2014/04/wickednotes3.pdf
https://www.kl.nl/wp-content/uploads/2014/04/wickednotes3.pdf
http://irevolution.net/2013/06/27/what-is-big-crisis-data/
http://irevolution.net/2013/06/27/what-is-big-crisis-data/
http://www.scientificamerican.com

	Abstract
	1. Introduction
	2. Resilience analytics
	3. Research gaps
	3.1. Descriptive analytics
	3.2. Predictive analytics
	3.3. Prescriptive analytics

	4. Concluding remarks
	Disclosure statement
	Funding
	Notes on contributors
	References



