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A new heuristic procedure for the fixed charge network flow problem is proposed. The newmethod lever-
ages a probabilistic model to create an informed reformulation and relaxation of the FCNF problem. The
technique relies on probability estimates that an edge in a graph should be included in an optimal flow
solution. These probability estimates, derived from a statistical learning technique, are used to reformu-
late the problem as a linear program which can be solved efficiently. This method can be used as an inde-
pendent heuristic for the fixed charge network flow problem or as a primal heuristic. In rigorous testing,
the solution quality of the new technique is evaluated and compared to results obtained from a commer-
cial solver software. Testing demonstrates that the novel prediction-based relaxation outperforms linear
programming relaxation in solution quality and that as a primal heuristic the method significantly
improves the solutions found for large problem instances within a given time limit.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction The objective function in (1) is the sum of variable and fixed costs
The fixed charge network flow problem (FCNF) can be described
on a network G ¼ ðN;AÞ, where N and A are the sets of nodes and
edges, respectively. Each node i 2 N has a supply/demand com-
modity requirement Ri (Ri > 0 if node i is a supply node; Ri < 0 if
node i is a demand node; otherwise, Ri ¼ 0). Each edge ði; jÞ 2 A
has costs associated with commodity flow. Let cij and f ij denote
the variable and fixed costs, respectively. An artificial capacity
value, Mij, can be used in the problem formulation to ensure that
the fixed cost f ij is incurred whenever there is a positive flow on
ði; jÞ 2 A. There are two types of variables in the FCNF, edge ði; jÞ
flow and usage, denoted as xij and yij, respectively. The latter is a
binary variable representing the decision to use ði; jÞ 2 A for routing
commodities and incurs the fixed cost f ij. The formulation is pro-
vided in Eqs. (1)–(4).

min
X
ði;jÞ2A

ðcijxij þ f ijyijÞ ð1Þ

s:t:
X
ði;jÞ2A

xij �
X
ðj;iÞ2A

xji ¼ Ri 8i 2 N ð2Þ

0 6 xij 6 Mijyij 8ði; jÞ 2 A ð3Þ
yij 2 f0;1 8ði; jÞ 2 A ð4Þ
incurred for the solution. Constraint (2) ensures that the inflow
and outflow satisfy the supply or demand requirements at node
i 2 N. Constraint (3) creates a logical relationship between xij and
yij. Constraint (4) defines yij as binary, which makes the problem a
mixed binary programming problem.

Many practical problems can be modeled as a FCNF problem or
variation thereof, such as transportation problems (El-Sherbiny &
Alhamali, 2013), the lot sizing problem (Steinberg & Napier,
1980), the facility location problem (Melo, Nickel, & Saldanha-da
Gama, 2009; Nozick, 2001), network design (Costa, 2005;
Ghamlouche, Crainic, & Gendreau, 2003; Lederer &
Nambimadom, 1998) and others (Armacost, Barnhart, & Ware,
2002; Jarvis, Rardin, Unger, Moore, & Schimpeler, 1978). The FCNF
problem is an NP-hard problem and over the decades, a significant
quantity of research has been directed towards providing solution
approaches to the FCNF. Many techniques utilize variations of the
branch-and-bound (B&B) algorithm to search for the exact solution
of the FCNF (Barr, Glover, & Klingman, 1981; Cabot & Erenguc,
1984; Driebeek, 1966; Hewitt, Nemhauser, & Savelsbergh, 2010;
Kennington & Unger, 1976; Ortega & Wolsey, 2003; Palekar,
Karwan, & Zionts, 1990). The B&B algorithm may be inefficient
due to the lack of the tight bounds during the linear programming
(LP) relaxation.

State-of-the-art MIP solvers combine a variety of cutting plane
strategies, heuristic techniques with B&B to search for the exact
optimal solution. Modern MIP solvers use preprocessing methods
to reduce the search space and significantly accelerate the solving
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Table 1
Logistic regression model from Nicholson and Zhang (2016).

Predictor description Predictor
notation

Regression
coefficient

(Intercept) 8.32
Number of nodes n �0.048
Number of edges m �0.0055
Variable cost on ði; jÞ cij �0.0879
Fixed cost on ði; jÞ f ij �0.0002
Fixed to variable cost ratio cij <0.0001
Tail node type: transhipment ti ¼ 0 �0.543
Tail node type: supply ti ¼ 1 2.17
Head node type: transhipment tj ¼ 0 �3.01
Head node type: supply tj ¼ 1 �2.38
Outdegree of tail node �di� �2.59
Indegree of tail node �d�i �2.69
Outdegree of head node �dj� �2.3

LP relaxation usage �lBij 1.4

LP relaxation flow �lij 5.76

Tail node requirements �ri 0.967
Tail adjacent in-supply �rSi� 0.765

Tail adjacent in-demand �rDi� 0.878

Tail adjacent out-supply �rS�i �0.215

Tail adjacent out-demand �rD�i 0.464

Head adjacent in-supply �rSj� �0.797

Head adjacent in-demand �rDj� �0.917

Head adjacent out-supply �rS�j �0.122

Demand head nodes adjacent to tail �dDi� �1.3

Supply tail nodes adjacent to tail �dS�i 1.84

Demand tail nodes adjacent to tail �dD�i 4.57

Demand head nodes adjacent to head �dDj� �1.58

Supply tail nodes adjacent to head �dS�j 3.19

Demand tail nodes adjacent to head �dD�j 1.26
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processes (Bixby, Fenelon, Gu, Rothberg, & Wunderling, 2000).
More details of the preprocessing techniques can be found in
Nemhauser and Wolsey (1988), Wolsey (1998), Fügenschuh and
Martin (2005), Mahajan (2010). Additionally, due to the impracti-
cal computational effort to obtain exact solutions for large
instances, heuristic approaches to obtain near-optimal solutions
have generated considerable research interest (Adlakha &
Kowalski, 2010; Antony Arokia Durai Raj & Rajendran, 2012;
Balinski, 1961; Kim & Pardalos, 1999; Molla-Alizadeh-Zavardehi,
Hajiaghaei-Keshteli, & Tavakkoli-Moghaddam, 2011; Monteiro,
Fontes, & Fontes, 2011; Sun, Aronson, McKeown, & Drinka, 1998).

In this study, a novel prediction-based relaxation (PBR) method is
proposed. PBR may be used as an FCNF heuristic solution technique
or as a primal heuristic to potentially improve on exact search
solution quality and time. The new method leverages a probabilis-
tic model to create an informed reformulation and relaxation of the
FCNF problem. For the FCNF problem, a binary probabilistic classi-
fication model is required. Approaches to develop such models are
common in the field of statistical learning and include logistic
regression, linear discriminant analysis, partial least squares dis-
criminant analysis, and random forests among others. The present
work demonstrates the utility of PBR by implementing one such
model, a logistic regression developed by Nicholson and Zhang
(2016).

The primary contribution of this work is to introduce and eval-
uate a new paradigm for approaching the classical FCNF problem.
In particular, elements from statistical learning are combined with
more traditional solution techniques from Operations Research.
Section 2 provides a brief review of the predictive model from
Nicholson and Zhang (2016). Subsequently, the necessary mathe-
matical transformations to leverage the predictive model results
are described and the formal PBR mathematical model is pre-
sented. Section 3 describes the experiments to evaluate PBR as
an independent heuristic and explores the strategy to combine
PBR and the B&B algorithm as an exact solution approach. The
work is concluded in Section 4.
2. Prediction-based relaxation

2.1. Motivation

The prediction-based relaxation approach is dependent on an
underlying statistical model to produce probabilities for positive
edge flow in an FCNF instance. A variety of predictive modeling
methods to produce such probabilities are possible. One such pos-
sibility is the statistical learning model developed in Nicholson and
Zhang (2016). Their model is based on the 28 variables described in
Table 1. The authors classify these variables as being associated
with four types of network characteristics: overall network level
(e.g., total number of nodes), edge specific attributes (e.g., variable
cost), linear relaxation based variables (e.g., edge flow in an relaxed
problem), and lastly, variables related to the nodes incident to an
edge (e.g., node degree). While many network and network compo-
nent features are possible, their guiding principle was to find pre-
dictive variables that are relatively straightforward and easy to
compute since their goal was to introduce and explore a new para-
digm for understanding and exploiting FCNF problems. Through
the use of initial trial and error tests and secondly, the use of
Akaike information criterion informed stepwise regression, this
small subset was selected. These features are used as predictors
in a logistic regression model to predict components of the FCNF
optimal solution. The associated regression coefficients are
provided in Table 1. In particular, the model produces a likelihood
of edge usage with a logistic regression model. The response
variable is a binary variable, indicating whether or not the edge
has positive flow in the optimal solution. Let Yij denote the
response variable,

Yij ¼
1; edge ði; jÞ is used in the FCNF optimal solution
0; otherwise:

�

Logistic regression is supervised learning technique to develop a
probabilistic classifier. The resulting model, based on the input
data, assigns a probability that the response variable attains a given
value. PBR requires a probabilistic classifier, albeit it is in no way
limited to logistic regression derivedmodels. Ideally, a probabilistic
model for PBR is both highly accurate and efficient to implement.
The logistic regression model conceived and studied in Nicholson
and Zhang (2016) meets both of these criteria. Ideally, if edges used
in an optimal FCNF solution could be predicted perfectly, then the
B&B search would be altogether eliminated. Perfect predictions
however are not a reasonable aspiration in general. If, however, a
predictive model were highly accurate, then at least the search
space could potentially be reduced or the search otherwise
informed. The goal of PBR is to exploit such probability models.

2.2. Mathematical model

In this work, the probability from the final logistic regression
model is used to develop a novel heuristic for the FCNF. Let
pij � PðYij ¼ 1Þ denote the probability estimate that edge ði; jÞ 2 A
is used in the FCNF problem. The value for pij is derived from any
appropriate predictive model. Let c0ij ¼ � ln pij where
0 < pij 6 1 8ði; jÞ 2 A. The PBR cost function is denoted by z0PBR
and defined as

z0PBR ¼
X
ði;jÞ2A

c0ijxij ¼
X
ði;jÞ2A

� xij ln pij ¼ � ln
Y
ði;jÞ2A

p
xij
ij



Table 2
Test set instance characteristics.

Parameters Min Q1 Median Mean Q3 Max

n 10 250 400 446.7 700 1000
m 20 9497 26270 29520 46480 82010
q 0.03 0.24 0.58 0.55 0.89 1.00
S 333 858.2 947 968.4 1039 1971
c 7110 7986 8000 8008 8010 9809
as 0.100 0.300 0.318 0.317 0.333 0.500
ad 0.080 0.189 0.200 0.203 0.216 0.400
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The PBR problem formulation is: min z0PBR subject to (2)–(4). PBR is
linear and can be solved efficiently. Intuitively, in a simple feasible
instance with single supply node s, single demand node t, and total
network supply equal to 1, the PBR solution will be a most probable
feasible path from s to t. That is, if Pst denotes a most probable fea-
sible path from s to t, then

z0PBR ¼ � ln
Y

ði;jÞ2Pst
pij

is minimal and xij ¼ 1 () xij 2 Pst . In general, for feasible FCNF
problems with x P 0, the solution to PBR identifies a set of edges
which form feasible likely paths from possibly many supply nodes
to many demand nodes.

Let xPBRij denote the value of optimal flows on edge ði; jÞ 2 A in

the PBR problem. Let yPBRij be a binary variable corresponding to
edge usage in the PBR problem,

yPBRij ¼ 1; xPBRij > 0

0; otherwise

(
8ði; jÞ 2 A:

The optimal solution of PBR provides a feasible solution to the orig-
inal FCNF problem since xPBR and yPBR satisfy constraints (2)–(4). Let
zPBR denote the objective value from (1) computed from the PBR
derived solution,

zPBR ¼
X
ði;jÞ2A

cijxPBRij þ f ijy
PBR
ij

� �
:

Table 3
Mean objective gap percentage.

Levels

OverallEasy Medium Hard

zLPgap �25.23% �35.57% �36.18% �32.03%
(<0.001) (<0.001) (<0.001) (<0.001)

zGRBgap 14.29% �1.25% �29.84% �6.16%
(<0.001) (0.004) (<0.001) (<0.001)
3. Computational results

3.1. Experimental design

In order to evaluate the solution quality and efficiency of PBR as
a heuristic approach to the FCNF, 900 problem instances are gener-
ated which encompass a variety of network sizes and densities. The
tests are grouped into three difficulty levels based on problem size,
namely the number of nodes: 300 small, ‘‘easy” problems (with
Uð10;300Þ nodes), 300 medium-sized and ‘‘medium” difficulty
problems (with Uð350;650Þ nodes), and 300 larger, ‘‘hard” prob-
lems (with Uð700;1000Þ nodes) are created. The number of edges,
m, is also generated in a stochastic manner. In particular, a value
for m

2 is uniformly randomly chosen such that n� 1 6 m
2 6 nðn�1Þ

2 .
The first n� 1 edges are added to the graph to ensure connectivity
as follows. Assuming the nodes in the graph are identified with a
unique index, i ¼ 1;2; . . . ;n, then for every node i > 1, an edge
ði; kÞ is added to the instance where k < i is a randomly selected
node index. The remaining m

2 � nþ 1 quantity of edges is added
to the graph randomly. Each of the m

2 undirected edges is replaced
by two directed edges.

The percentage of supply, demand and transshipment nodes are
randomly chosen with respectively approximate probabilities,
0:2; 0:2, and 0:6. The probabilities are approximate because adjust-
ments are necessary to ensure the instance is feasible. The total
number of supplies is randomly assigned on Uð1000;2000Þ. Let as

and ad denote the percentage of supply and demand nodes, respec-
tively. All instances have relatively high fixed to variable cost ratios
denoted by c. The variable and fixed costs are randomly assigned
on Uð0;10Þ and Uð20000;60000Þ, respectively.

Table 2 reports statistics (minimum, first quartile, median,
mean, third quartile, and maximum) for the number of nodes,
edges, network density q, average supply per node S, fixed to vari-
able cost ratio, and percentages of supply and demand nodes in the
network instances. The smallest instance has 10 nodes and 20
directed edges, whereas the largest problem contains 1000 nodes
and 82,010 edges.
The empirical analysis goal is threefold: (i) compare PBR solu-
tion quality and time with LP relaxation, (ii) evaluate PBR as an ini-
tial solution approach against a state-of-the-art commercial
software, and (iii) evaluate a possible hybrid strategy whereby
PBR is used to inject solutions into an exact search. The first of
the two analysis goals are realized in Section 3.2. The hybrid strat-
egy is detailed in Section 3.3.

Gurobi 6.0 software is used as the optimization software. By
default, Gurobi uses 14 different MIP heuristics, 16 cutting plane
strategies, and several presolve techniques (Optimization, 2012).
The best objective value found using Gurobi 6.0 is denoted as
zGRB. The objective value of the FCNF found using LP relaxation is
denoted by zLP. The experiments are performed on a Windows 7
64 bit machine with Intel Xeon CPU E5-1620 and 8 GB RAM. The
time limit for all three techniques is 60 s. If the default Gurobi soft-
ware cannot obtain a feasible solution within 60 s, the problems
instances are excluded from the detailed analysis in Section 3.2
since no comparisons are possible. From the initial 900 generated
test instances, 274 are excluded based on this principle. Therefore,
the statistical analysis is performed on the remaining 626 cases:
224 easy, 236 medium, and 166 hard problems.

3.2. Results analysis: initial solutions

Let zX
gap denote the percentage gap between zPBR and zX ,

zX
gap ¼ zPBR � zx

jzxj � 100%; X 2 fLP;GRBg: ð5Þ

Performance regarding solution quality is measured with respect to
zX
gap. If PBR improves on the LP (or GRB) solution, the value of zLPgap (or

zGRBgap ) is negative. The mean gap percentages and the associated p-
values from a paired t-test are listed in Table 3. The distribution
of observed gap values with the LP solution and the commercial sol-
ver solution by problem difficulty are depicted in Figs. 1 and 2. The
PBR solution is consistently better than the LP relaxation solution
across all three difficulty levels; overall PBR finds solutions that
are 32% better than the LP solution. As the problem difficulty
increases, the performance gap increases, obtaining a 36% average
improvement for the hardest problems. PBR also improves on the
solution quality when compared to the commercial solver during
the first 60 s of computation time. The overall improvement is a sta-
tistically significant 6% improvement. Again, the performance ben-
efits from PBR improve as the problem difficulty increases – the
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easiest problems do not benefit from PBR, while the hardest prob-
lems are improved by nearly 30%. Among the hard FCNF problems,
PBR outperforms the commercial solver in 98% of the instances
regarding solution quality and has an average computation time
of only 0:33 seconds.

The PBR solution time (computation of features, calculation of
probabilities, problem revision and solution, and computation of
objective value) is primarily dominated by the LP relaxation solu-
tion time necessary for constructing two predictors in the logistic
regression model. The LP relaxation solution time in seconds is
plotted against the number of edges in the network in Fig. 3. The
figure also depicts the incremental PBR computation time. For rel-
atively smaller problems (e.g., less than 5000 edges), both the LP
solution time and the incremental PBR time are small. As the prob-
lem size increase however, the LP solution time becomes a signif-
icant factor in computation, whereas the incremental PBR
computation time appears to be constant with respect to the net-
work size.

Given the solution quality of PBR and the relatively small incre-
mental computational time, PBR is a candidate technique to
improve practical solution efficiency of FCNF problems. Section 3.3
provides a description, implementation, and test for using PBR as a
primal heuristic.
3.3. Results analysis: PBR hybrid approach

Primal heuristics are applied at the root node or early in the B&B
process in order to find good integer feasible solutions. Examples
include the rounding method (Goemans & Williamson, 1995),
relaxation enforced neighborhood search (Berthold, 2007), and fea-
sibility pump (Achterberg & Berthold, 2007; Bertacco, Fischetti, &
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Table 4
Objective values and gaps report.

Nodes Arcs zPBR-primal zGRB-default zgap (%)

100 494 2061558.5 2061558.5 0.00
1044 1979088.4 1963950.0 0.77
706 1992384.1 1992384.1 0.00
630 1875760.1 1875760.1 0.00
640 1817097.8 1817097.8 0.00
530 1858583.9 1858583.9 0.00
394 2523919.8 2526065.6 �0.08
654 1781751.0 1778756.3 0.17

1034 1302851.6 1302851.6 0.00
600 1997502.1 1997502.1 0.00

300 3320 5007261.7 5043679.9 �0.72
8376 3609142.9 3609142.9 0.00
5262 4673005.4 4673005.4 0.00
4568 4496875.7 4447349.7 1.11
4660 4745624.5 4755089.9 �0.20
3650 5238362.1 5238362.1 0.00
2404 5520568.4 5520568.4 0.00
4786 4530403.6 4528409.5 0.04
8286 4284231.6 4310106.4 �0.60
4304 4823258.2 4823258.2 0.00

900 26464 14446116.2 14880751.9 �2.92
72276 11818928.8 12094918.3 �2.28
44070 13171786.0 14574145.8 �9.62
37784 13726017.7 15042070.8 �8.75
38618 13491715.7 13790571.2 �2.17
29458 15662131.2 17061309.4 �8.20
18178 14463571.1 14463571.1 0.00
39742 13518757.4 14540684.5 �7.03
71468 12305509.0 12266906.2 0.31
35390 13488456.0 14346083.8 �5.98

Superior objective values are highlighted in bold.
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Lodi, 2007). Obtaining a good incumbent solution at an early stage
of the B&B process can both improve on the upper bound and
accelerate the search due to better fathoming. In particular, the
fathoming operation discards a subset of the solution space if the
lower bound at a search node is greater than the incumbent solu-
tion. The incremental PBR computation time is small and does not
increase with problem size, the PBR solution quality exceeds that
of LP relaxation in all tests, and is demonstrably better than the
default collection of heuristics, pre-processing algorithms, and
other techniques built into modern solver software for the larger
problem instances. Improvement heuristics are used to improve
the incumbent solution at branching nodes, and examples include
local branching (Fischetti & Lodi, 2003) and the relaxation induced
neighborhood search (Danna, Rothberg, & Le Pape, 2005). Since the
LP relaxation is updated at each B&B node, the probabilities from
the logistic regression predictive model can be updated at each
node as well. However, during initial testing, we find PBR to be best
employed as a primal heuristic. As such PBR will be incorporated as
a primal heuristic and evaluate solution quality for a variety of net-
work instances against that of commercial MIP solver.

The test set includes a total of 30 randomly generated instances
of varying sizes; ten problems have 100 nodes, ten have 300 nodes,
and the largest set of ten instances are comprised of 900 nodes.
Each instance is generated as described in Section 3.1 and has a
high fixed to variable cost ratio. The number of edges range from
394 to 72,276. The objective of this experiment is to evaluate the
performance of PBR as primal heuristic in searching for an exact
solution. However, practically speaking many hard problems are
not solved to optimality. In this experiment, a maximum run time
of 3600 s for each test is permitted. Some of the instances cannot
be solved in only one hour. The best objective found using the
PBR primal heuristic with the commercial solver as well as the best
objective found using the default solver strategy alone within the
time limit are recorded as zPBR-primal and zGRB-default, respectively.

Let zgap denote the percentage gap between zPBR-primal and
zGRB-default be defined as

zgap ¼ zPBR-primal � zGRB-default
jzGRB-defaultj � 100%:

The results are reported in Table 4. The p-value results of the paired
t-test on the instances with 100 and 300 nodes are 0:33 and 0:78,
respectively. Statistically, there is no difference in the solution qual-
ity results for these two problem classes. However, for the largest
problem class with 900 nodes, the p-value for the paired t-test is
0:004. The average zgap is �4:07%. The default commercial solver
alone only outperformed the PBR hybrid approach in one of ten
hard problems, whereas the new hybrid technique outperformed
the default software in eight out of ten hard problems. In three of
these cases, the improvements exceed 8% points.

4. Conclusions

This paper introduces an original and novel heuristic technique
for the FCNF problem. To the best of our knowledge, PBR is the first
method that inherently employs information from a statistical
learning model to solve a mixed integer programming problem.
PBR replaces the original edge flow cost with a function of predic-
tive model probabilities. In this implementation, the model pro-
posed in Nicholson and Zhang (2016) is used as the underlying
probabilistic classifier and proves to be a valid model. Empirical
analysis validates the efficiency and effectiveness for PBR as an
independent heuristic and as a primal heuristic to improve an
exact search. For larger problems, the incremental computational
time is negligible. PBR consistently improves on the FCNF LP relax-
ation solution across all problem difficulty levels evaluated. Addi-
tionally, compared to the variety of algorithms and heuristics
currently incorporated in commercial solvers, PBR provides a
favorable alternative (assuming the predictive model underpin-
ning the technique is of sufficient accuracy and efficiency). These
characteristics support the concept of integrating PBR as a primal
heuristic for FCNF problems. Empirically, this strategy produces a
statistically significant improvement in the solution quality for
large FCNF instances.

This work demonstrates some of the potential of incorporating
statistical learning techniques with traditional optimization tech-
niques. For the PBR implementation to work well, the underlying
model should be accurate and the associated predictive probabili-
ties should be computational easy to obtain. The FCNF is a classical
NP-hard problem with wide application. The nature of the FCNF
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allows for certain consistent descriptors (e.g., fixed cost to variable
cost ratio, average supply per node, etc.) which can be used to
develop predictive models. While logistic regression forms the
base of the implementation in this paper, any probabilistic classi-
fier can be used. Supervised learning methods for model building
are dependent on the available data and the particular characteris-
tics appropriate to various optimization problems. If more specific
problem features are relevant (e.g., edge capacities in a capacitated
networks, granular commodity requirements for a multiple com-
modity problem, etc.) or another supervised learning approach is
more accurate, a different predictive model may be developed.
The empirical results in this study, based on a relatively simple
predictive model applied to a difficult optimization problem, are
encouraging.
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