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ABSTRACT

Analyzing network vulnerability is a key element of network planning in order to be prepared for any disruptive
event that might impact the performance of the network. Hence, many importance measures have been
proposed to identify the important components in a network with respect to vulnerability and rank them
accordingly based on individual importance measure. However, in this paper, we propose a new approach to
identify the most important network components based on multiple importance measures using a multi criteria
decision making (MCDM) method, namely the technique for order performance by similarity to ideal solution
(TOPSIS), able to take into account the preferences of decision-makers. We consider multiple edge-specific flow-
based importance measures provided as the multiple criteria of a network where the alternatives are the edges.
Accordingly, TOPSIS is used to rank the edges of the network based on their importance considering multiple
different importance measures. The proposed approach is illustrated through different networks with different

densities along with the effects of weighs.

1. Introduction

In light of the more frequent and more severe disruptive events that
have had large-scale impacts to society, analyzing the vulnerability of
critical infrastructures has attracted many researchers. In the US,
recent policy has emphasized that critical infrastructures “must be
secure and able to withstand” all hazards [60], suggesting that
vulnerability planning is an important component of preparedness.
Many of these infrastructures have interdependencies and exhibit
network behavior, i.e., they define a set of infrastructures connected
by one or multiple relations.

The vulnerability of a network can be defined as the magnitude of
the damage to the network given the occurrence of a specific disruption
[30]. Approaches for analyzing network vulnerability can be broadly
classified into four categories based on how disruptions scenarios are
assessed [39]: scenario-specific, strategy-specific, simulation, and
mathematical modeling approaches. Scenario-specific approaches eval-
uate the possible consequences of a specific disruption scenario (e.g.,
[32,56]; Rodriquez-Nunez and Garcia-Palomares, 2014). Strategy-
specific approaches assess scenarios that follow a hypothesized se-
quence or strategy of disruption (e.g., [28,37,29]). Simulation ap-
proaches obtain an effective characterization of possible disruption
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impacts by evaluating a suitable number of disruption scenarios (e.g.,
[25,27,57]). Mathematical modeling approaches identify disruption
scenarios with the highest potential impact to network operation
relating to the loss or hardening of facilities (e.g., [14,38,44]).

Network vulnerability analyses often include determining the edges
or the nodes in a network that have the most impact on the
performance of the network when disrupted. In the field of reliability
engineering, the quantification of the impact of components on the
performance of a system is accomplished with importance measures.
For networks, several importance measures have been suggested with
respect to vulnerability to identify important components in a network,
including primarily topological measures such as the L-M measure
[33] and N-Q measure [40] by which the importance of a network
component is measured by the relative drop in the network efficiency
after the component is removed from the network. Other importance
measures for network components include travel time and travel
distance (e.g., [19,52]), cost of travel time (e.g., [27,57]), and accessi-
bility (e.g., [12,55]), among others.

On the other hand, Nicholson et al. [41] combine scenario-specific
and strategy-specific approaches to recommend six flow-based impor-
tance measures (IMs) for network components (i.e., edges) to prioritize
proactive efforts to reduce the vulnerability of a geographic-based
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physical network with capacitated edges (or links) such as transporta-
tion networks. These edge-specific IMs can be used to assist decision
makers in prioritizing edges for recovery after a disruptive event. As the
IMs measure different characteristics of the network (e.g., some are
flow-driven, some combine flow with topology), different rankings of
edge importance are possible. In this work, we propose the use of a
multi-criteria decision analysis approach to combine these multiple
characteristics into a more holistic ranking of vulnerable network
edges.

The remainder of the paper is organized as follows. Section 2 gives
brief definitions and notations, an overview of network edge impor-
tance measures, and an introduction to the multi-criteria decision
analysis approach (TOPSIS) along with an example. The proposed
approach for prioritizing network edges is stated in Section 3. In
Section 4, illustrative examples are presented for different networks
with different relations among nodes and edges (i.e., densities) as well
as the effects of weights for the proposed approach. Finally, concluding
remarks are provided in Section 5.

2. Methodological background

In this section, we discuss the background required to develop our
proposed approach.

2.1. Definitions and notation

In this work, we consider a network that can be categorized as a
directed graph which is denoted by G = (V, E) where V is a set of n
vertices or nodes and E C {(i, j): i, j € V,i # j} is a set of directed edges
or links. For edge (i, j) € E, the initial node i is called the tail and the
terminal node j is called the head. Let the flow and capacity on edge
(i, ))EE denoted by x; and c;, respectively. Let P represent a finite
directed path from a source node s to a target node 7, which are
connected through a set of nodes in V and one or more directed edges
in E. The nodes between the source node s and the target node ¢ are
called internal nodes. The maximum capacity of a path is equal to the
minimum capacity of all edges within the path (i.e., ming ;e ,,cl:,-) [20].

The s — t max flow problem utilizes a subset of all possible paths
between s and ¢ to route a maximum flow from s to ¢ taking into
consideration the capacity of edges. So, the s — 7 max flow problem can
be formulated as a linear programing (LP) as shown in Egs. (1) — (3)
[3], where w;, in the objective function, Eq. (1), denotes the maximum
flow from node s to node 7 for any source and target node pair such that
s,t € V where s#t, otherwise w,=0 if s=t. Eq. (2) represents the flow-
conservation constraints which assure that the flow into and out of any
internal node must be equal and the flow out of the source node s and
into the target node  must equal w;,. The capacity constraints in Eq. (3)
ensure that there is no negative flow as well as flow through any edge
does not exceed its capacity.

maxw, 1
w, if i=s
st Y x> x=4 0 if i€ Vs 1)
(i) EE (i) EE —w, if i=t )
0<x;<¢; iLjEV 3)

We solve the s —¢ max flow problem using the push-relabel
maximum flow algorithm [21] for a more CPU efficient solution.

2.2. Edge importance measures

In this work, we study the multiple flow-based IMs suggested by
[41] relating to max flow paths within a network which measure the
importance of networks edges based on a tangible variation (i.e., flow).
Hence, six edge-specific, flow-based measures are studied to identify
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the most important edges for a network: All Pairs Max Flow Count
(MFC), Min Cutset Count (MCC), Edge Flow Centrality (EFC), Flow
Capacity Rate (FCR), Weighted Flow Capacity Rate (WFCR), and One-
at-a-Time Damage Impact (DI). The most important edges proposed by
these IMs can be reinforced, protected prior to any disruption, or
expedited during the recovery stage. All six edge-specific and flow-
based IMs are defined as follows.

The all pairs max flow edge count IM measures the utilization of a
given edge in all s — 7 pairs max flow problems. Accordingly, if an edge
is contributing more than others to all s — 7 pair max flow problems,
then it could cause a significant impact on network performance when
its capacity is affected by any disruptive event.

Definition 2.1. (MFC). The MFC of an edge (i, /), denoted as ;¢ is
defined in Eq. (4), where the value of y (i, j) is defined as 1 if edge (i, /)
is used in a given s — r max flow problem, and 0 otherwise.

Y wG )

s,tevV

JMFC _ 1
@7 hm - 1)
4)

The min cutset count IM quantifies the involvement of a given edge
to the min cutset for all s — 7 pairs where an s — ¢ cut on a graph is a
partitioning of nodes into two disjoint sets Sand Tsuch that s € S and
t € T and the s — 7 cutser is the set of edges which starts in Sand ends in
T. Hence, the mincut of a graph is the s — 7 cut with minimal capacity
(i.e., the sum of the capacity of the s-t cutset). The min cutset count
addresses whether or not an edge is a bottleneck. That is, if an edge
(i, j) is involved in the mincutset for an s — ¢ pair, then it is considered a
bottleneck for the corresponding max flow problem. Moreover, if the
capacity of an edge (i, j) is reduced due to a disruptive event, the max
flow value of that s — ¢ pair will be reduced too since s — rmax flow
equals s — 7 min cut [20].

Definition 2.2. (MCC). The MCC of an edge (i, j), denoted as I(f-‘f/-fc, is
defined in Eq. (5), where the value of §,(, j) is defined as 1 if edge (i, )
is a member in the s — ¢ cutset, and 0 otherwise.

1
ISC= ——— 3 6,
W T a0 50 )

s,tev (5)

The edge flow centrality IM measures the contribution of a given
edge to the max flow of all pairs. Hence, it measures importance based
on the ratio of the total volume of flow through a given edge for all
possible s — ¢ pair max flow problems to the flow of all pairs max flows.

Definition 2.3. (EFC). The EFC of an edge (i, j), denoted as I(,EJF)C, is
defined in Eq. (6), where w,(i, j) is the flow on (i, /) when the max flow
is routed from sto ¢ for all s — ¢ pair max flow problems.

JEFC _ Zx,rEV (s )

()N
ZS‘IGV Wit

©)]

The flow capacity rate IM quantifies how close a given edge is to
becoming a potential bottleneck based on the amount of flow through
that edge and its capacity as well. As a result, if the flow through a given
edge is close to its capacity, then network performance could be
affected by any disruption occurred on that edge. On the other hand,

if an edge is significantly underutilized concerning its capacity, then it
is inherently robust to disruptive events that might reduce its capacity.

Definition 2.4. (FCR). The FCR of an edge (i, j), denoted as I(Z-C)R , is
defined in Eq. (7) with the ratio of max flow along (i, j) to capacity c;.

FCR _ 1 w; (i, J)
iy =27 >
n(n ) siev S (@)

A weighted flow capacity rate IM measures the expected impact to
the overall network performance by considering the flow capacity rate
of a given edge along with the expected contribution of that edge to the
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max flow of all pairs. So for a given edge, it weighs each term in flow
capacity rate by the edge flow centrality.

Definition 2.5. (WFCR). The WFCR of an edge (i, j), denoted as
l(%-’;CR, is defined in Eq. (8).

WFCR _ 1 Dy i )F

(V)
n(n — 1) Zx,tev Wt sIEV Cij

8

The one-at-a-time damage impact IM is an empirical measure that
computes the impact to network performance when a given edge is
affected by a disruptive event. It provides the average percent change
through all s — + max flow problems when the capacity of edge (i, j) is
reduced by 50%.

Definition 2.6. (DI). The DI of an edge (i, j), denoted as I(ff), is

defined in Eq. (9), where w;, ; is the max flow from node s to node ¢

when the capacity of edge (i, j) is reduced by 50% (i.e., capacity is
O.SC,.j).
W

W St ij

1 st
nn—-1) z

s.teV Cij (9)

DI _
Lip =

2.3. TOPSIS

Multi-criteria decision analysis (MCDA) methods help decision
makers to evaluate and assess a set of alternatives to select a preferred
alternative, categorize a set of alternatives, or rank a set of alternatives
according to a particular preference, along several criteria [35]. The
Technique for Order Preferences by Similarity to an Ideal Solution
(TOPSIS) [26] is one such MCDA method to find a best alternative
based on the idea of a compromise solution, or the alternative that is
nearest to positive ideal solution and farthest from the negative ideal
solution for each criterion. TOPSIS has been widely used in different
applications [4] such as supply chain management and logistics (e.g.,
[63], [23]), design, engineering and manufacturing systems (e.g.,
[16,36]), business and marketing management (e.g., [2,43]), Health,
Safety and Environment Management (e.g., [46,54]), human resources
management (e.g., [7,13]), energy management (e.g., [6,8]), chemical
engineering (e.g., [45,58]), and water resources management (e.g.,
[5,22]), among others.

Let A={Ajli=1,..,n}and C = (Clj =1, ..., m} denote the set of
alternatives and the set of criteria, respectively. In our case, A is the set
of edges and C is the set of importance measures previously defined.

LetY = {);.jli =1,..nj=1, ..., m} represents the set of performance
ratings which includes the performance rating of each alternative with
each criteria and @ = {w}lj = 1, ..., m} is the set of weights of the

alternatives (wjzo and Z’;’:l w;=1). As several noncommensurate criter-

ia with potentially different scales are combined with TOPSIS, a scaling
equation is needed for the performance rating. One example is shown
in Eq. (10).

Y.
() = n7y2,
i=1Yj

i=1,...,n; j=1,....m

(10)

The weights are then applied to the scaled performance rating,
shown in Eq. (11).

Vi) = 01, i=1,...,nj=1,...,m (11)

The positive ideal solution (PIS), A, is determined as the collection
of the most preferred weighted and scaled performance ratings for each
criterion. Likewise, the negative ideal solution (NIS), A7, is the least
preferred rating. The PIS and NIS is found with Egs. (12) and (13),
respectively, where J* and J~ are defined as the set of benefit criteria
and the set of cost criteria, respectively.
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AT = (00 0D s v} = {(gi"‘@@)'i € J*),

(lm‘in v;Olj € Jf)}

AT = {3, ;0 e ) = {(lgl_ig vl j € J+),

(maxv,-j(y)lj S J’)}
1<i<n

The separation of each alternative from the PIS and the NIS is
found from Euclidean distance using Eqgs. (14) and (15). Dand D;” are
the distances between alternative A; and the PIS and the distance
between alternative A; and the NIS, respectively.

(12)

(13)

+ m + 2 :
Dt = [EL 100 = P il a4

- _ m - 2 .
D= (X 40 = o, i=len 15
Finally, the similarity of alternative A; to the PIS is calculated with
Eq. (16), where the alternative with the largest S;* value is the most
preferred. The ranking of alternatives across the m criteria is found by

ordering the S;" from largest to smallest.

+ D

i

St=—"=—  i=l,.
" DT+ D

. n

(16)

3. Proposed approach

In general, IMs produce useful information for decision makers.
For example, IMs identify the most important network components
according to a specific performance function or how close a given
network component is to becoming a potential bottleneck based its
utilization, as discussed earlier in Section 2.2. Such information could
be useful in enabling more effective resource allocation, such as finding
possible enhancement alternatives or specifying new component
characteristics (e.g., capacity or reliability) [47]. However, IMs are
generally defined based on different perspectives of network perfor-
mance that produce different information for decision makers; hence,
they could generate different rankings of network components based
on their importance as shown in Table 1 and Fig. 3. Thus, decision
makers face a challenge of combining such information from different
IMs and produce a unique rank of network components [47], thus the
motivation of this paper.

Different approaches have been proposed in the literature that dealt
with the problem of having different ranks for network components by
different IMs. Rocco et al. [51] aggregate multiple performance IMs
that are derived from an energy model for the security of energy supply
in the European Member States using a parametric ranking technique,
ordered weighted averaging, and a non-parametric ranking technique,
Copeland score. Rocco and Ramirez-Marquez [48] address the follow-
ing challenges with respect to having several IMs to evaluate the
importance of network components: (i) multiple ranking, (ii) multi-
component importance, and (iii) multi-function importance. They
propose a set of solutions to overcome these challenges based on
Hasse diagram, Copeland score and multi-objective optimization. Du
et al. [18] utilize TOPSIS to aggregate several different nodes centrality
measures (i.e., not flow-based measures) to obtain a unique importance
assessment of each node that help in identifying the influential nodes in
a complex network. Rocco et al. [50] combine the ranks of network
components obtained by three topology-based cascade models for
network outages using a non-parametric technique based on partial
order concepts to provide a unique importance ranking that identifies
critical nodes in a network with no consideration of decision makers’
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Table 1
Alternatives scores and ranks according to their importance.
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Edge MFC MCC EFC FCR WFCR DI
Score Rank Score Rank Score Rank Score Rank Score Rank Score Rank

1,2) 0.1429 5 0.0238 9 0.1429 7 0.0762 10 0.0109 9 0.0142 11
1,3) 0.1190 7 0.0238 10 0.2054 3 0.0782 9 0.0161 5 0.0160 10
1,4 0.0952 11 0.0238 12 0.0982 10 0.0655 12 0.0064 12 0.0096 12
(2,3) 0.2381 1 0.1429 2 0.0893 1 0.2381 1 0.0213 2 0.0432 1
(2,5) 0.0952 12 0.0952 4 0.1071 8 0.0952 7 0.0102 11 0.0249 4
(3,4) 0.1429 6 0.0714 6 0.0982 9 0.1310 4 0.0129 8 0.0214 7
(3,5) 0.1190 8 0.0952 3 0.1518 6 0.1012 5 0.0154 7 0.0232 5
(3,6) 0.1667 3 0.0476 8 0.1875 5 0.1000 6 0.0188 3 0.0214 8
(4,6) 0.1905 2 0.0714 5 0.1964 4 0.1310 3 0.0257 1 0.0308 3
(5,7) 0.1190 9 0.0238 11 0.2321 1 0.0688 11 0.0160 6 0.0189 9
(6,5) 0.1667 4 0.1667 1 0.0625 12 0.1667 2 0.0104 10 0.0313 2
(6,7) 0.1190 10 0.0714 7 0.2054 2 0.0913 8 0.0187 4 0.0218 6

preferences.

We propose TOPSIS as a new approach to prioritize edges within a 3

network based on IMs from multiple perspectives. It provides a rank of 5 1 9

the network edges according to their importance based on multiple 4

flow-based IMs in Section 2.2. ; 1

The specific stepwise procedure for performing the proposed 6
approach is illustrated in Fig. 1. 5
4, 2
3.1. Small example 4

In this section, a numerical example is introduced to illustrate the
steps of applying the proposed approach. Consider a network with
seven nodes and twelve edges, as shown in Fig. 2, where edges are
labeled by their capacities.

To apply the proposed approach, we follow the steps shown in
Fig. 1. We start the first step by calculating the performance rating
(score) of each alternative by each criterion considering the flow-based
IMs in Section 2.2 with the following order of the IMs: MFC, MCC,
EFC, FCR, WFCR, and DI. Table 1 provides the ranks of the edges

' N\
Step 1: Calculate the performance rating of each alternative (network

component) by each criterion (importance measure).

(-

Step 2: Normalize the performance ratings of the alternatives using Eq. 10.

-

Step 3: Assign weights to all the criteria, such that they sum to 1.

u

Step 4: Calculate the weighted normalized performance ratings of the
alternatives using Eq. 11.

¢

Step 5: Determine the positive and negative ideal solutions, PIS and NIS,
using Eqs. 12 and 13, respectively.

-

Step 6: Calculate the separation of each alternative from PIS and NIS, D*
and D™, using Eqs. 14 and 15, respectively.

u

Step 7: Calculate the similarity of each alternative to the PIS using Eq. 16.

<1

Step 8: Rank of the alternatives based on their similarities to the PIS, where
the larger similarity value indicates the more important alternative.

Fig. 1. The stepwise procedure of the proposed approach.
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Fig. 2. A network example with labeled edges by capacity, adapted from Hillier and
Lieberman [24].
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MCC EFC FCR WFCR DI

Importance Measures

Fig. 3. Parallel coordinates plot for the edges of the network example.

obtained according to each IM perspective. Furthermore, Fig. 3 shows
the Parallel Coordinates Plot (PCP) for each IM. Each line corresponds
to an edge in the network example and the plotted values correspond to
the normalized IM scores for the corresponding IM criteria listed on
the x-axis. Each IM ranks the network edges differently as shown in
Fig. 3. Note that there is no edge that can be considered as the most
important for each IMs (i.e., there is no dominant edge). Also it is not
clear which edge is the most important when the IM are simultaneously
considered. So an aggregated importance is suggested using the
proposed approach. In the second step, we normalize the performance
ratings of the alternatives in Table 1 with Eq. (10). For instance, the
normalized ratings of the first alternative, edge (1, 2), are
ri; = {0.2779,0.0811,0.2617,0.1809,0.1954,0.1673}. After that, we assign
weights to all the criteria in step 3 where for this example we consider
each IM criterion to have an equal weight (i.e., the weight of each IM is
1/6). Next, we find the weighted normalized performance ratings, v;, of
the alternatives in step 4 which are obtained by Eq. (11)
considering  equal  weights for all the IMs e.g,



Y. Almoghathawi et al.

Table 2
Alternatives ranks according to their similarity to the PIS.
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Table 5
Alternatives ranks according to the three MCDM methods.

Edge Dt D™ st Rank
(1,2) 0.1325 0.0334 0.2014 11
(1,3) 0.1257 0.0545 0.3025 10
(1,4) 0.1507 0.0109 0.0675 12
2,3) 0.0476 0.1331 0.7367 1
(2,5) 0.1090 0.0546 0.3339 7
(3,4 0.1031 0.0516 0.3335 8
(3,5) 0.0957 0.0638 0.3999 5
(3,6) 0.1026 0.0652 0.3885 6
(4,6) 0.0753 0.0953 0.5587 3
5,7) 0.1251 0.0624 0.3326 9
(6,5) 0.0816 0.1033 0.5587 2
(6,7) 0.1002 0.0687 0.4068 4
Table 3
Alternatives ranks according to PROMETHEE.

Edge g o %] Rank
(1,2) 0.0579 0.3291 -0.2712 11
(1,3) 0.1172 0.2640 -0.1468 10
(1,4) 0.0046 0.4902 -0.4856 12
2,3) 0.6465 0.0843 0.5622 1
(2,5) 0.1454 0.2641 -0.1187 9
3,4) 0.1519 0.2180 -0.0661 7
(3,5) 0.1927 0.1688 0.0238 6
(3,6) 0.2047 0.1577 0.0470 5
(4,6) 0.4164 0.0788 0.3376 2
5,7) 0.1472 0.2577 -0.1104 8
(6,5) 0.3726 0.1922 0.1804 3
6,7) 0.2043 0.1565 0.0477 4

v;={0.0463,0.0135,0.0436,0.0302,0.0326,0.0279}. In the fifth step, we
determine  the positive ideal solution, PIS, and the
negative ideal solution, NIS, using Eqs. (12) and (13), respec-
tively. So,  PIS={0.0772,0.0946,0.0709,0.0942,0.0770,0.0845} and
NIS={0.0309,0.0135,0.0191,0.0259,0.0192,0.0189}. The distance between
each alternative and the PIS and the NIS is then calculated in step 6 by
Egs. (14) and (15), respectively, as shown in Table 2. In the following
step, the similarity of each alternative to the PIS is calculated by Eq.
(16). Finally, the ranks of the alternatives are determined in step 8
according to their similarity to the PIS where the largest similarity value
is the most preferred alternative, see Table 2 where it shows that edge
(2,3) is the most important one and edge (1,4) is the least important
one.

3.2. Comparison with other MCDM methods

In this section, we compare the effectiveness of TOPSIS in the
proposed approach for aggregating the different importance measures

Table 4
Comparison matrix and ranks for all alternatives by CS.

Edge Rank

TOPSIS PROMETHEE CS
(1,2 11 11 11
(1,3) 10 10 9
(1,4) 12 12 12
2,3) 1 1 1
(3,2) 8 7 7
(2,5) 7 9 8
(3,5) 5 6 5
(3,6) 6 5 4
(4,6) 3 2 2
(5,7) 9 8 10
(6,5) 2 3 3
6,7) 4 4 6

with two alternative MCDM methods, namely the Preference Ranking
Organization Method for Enrichment Evaluations (PROMETHEE) and
the Copeland score (CS) method.

PROMETHEE [9,10] belongs to a family of outranking methods, or
partial aggregation methods (as opposed to complete aggregation
methods such as multiattribute utility theory which require the
potentially unrealistic synthesis of partial utility functions [17]. The
outranking relationship obtained from PROMETHEE, by comparing all
of the pairs of alternatives (nx(n — 1)xm pairwise comparisons) a and
b, but instead it establishes if “the alternative a is at least as good as the
alternative b” [11]. Multiple criteria are considered when ranking
alternatives, and, like TOPSIS, the criteria can be weighted to represent
decision maker preferences. In this paper we have used an extension to
PROMETHEE referred to as PROMETHEE 1II to provide a possible
total or complete ranking of the alternatives and we used a V-shape/
linear preference function. To provide a more accurate comparison
with TOPSIS and the CS method, we adopt equal criteria weights.
Table 3 provides the net outranking flow @ for each alternative from
Fig. 2, which is the difference between the positive outranking flow @
and the negative outranking flow @~, as well as the rank of each
alternative where the higher the net outranking flow indicates the more
important alternative. More details on the calculation of
PROMETHEE, which lie outside of the scope of this paper, can be
found in [61].

The CS method is computed based on pairwise comparisons
between objects in a set and is defined as the difference between (i)
the number of times an alternative a is better (with respect to a
particular criterion) than the other alternatives and (ii) the number of
times that alternative a is worse (with respect to the same criterion)
than the other alternatives, then that difference is summed across all
criteria [1]. The CS method is non-parametric in that no weights are
assigned to the different criteria. The comparison matrix for all the

Edge (1,2) (1,3) 1,4 (2,3) (3,2) (2,5) (3,5) (3,6) (4,6) (5,7) (6,5) (6,7) Cs Rank
1,2) 0 -3 5 -4 -3 0 -4 -6 -6 -1 -2 -4 -28 11
1,3) 3 0 5 -4 -2 0 -1 -4 -4 0 -2 -4 -13 9
1,4 -5 -5 0 -4 -5 -5 -6 -6 -6 -5 -4 -6 -57 12
2,3) 4 4 4 0 4 4 4 4 2 4 4 4 42 1
2,5) 0 0 5 -4 0 0 -3 -2 -4 0 -4 0 -12 8
(3,4) 3 2 5 -4 0 0 -2 -1 -4 2 -2 -1 -2 7
(3,5) 4 1 6 -4 2 3 0 0 -4 1 -2 1 8 5
(3,6) 6 4 6 -4 1 2 0 0 -6 4 -1 0 12 4
(4,6) 6 4 6 -2 4 4 4 6 0 4 0 3 39 2
(5,7) 1 0 5 -4 -2 0 -1 -4 -4 0 -2 -3 -14 10
(6,5) 2 2 4 -4 2 4 2 1 0 2 0 2 17 3
6,7) 4 4 6 -4 1 0 -1 0 -3 3 -2 0 8 6
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(a) Small graph, lower density (SGLD)

®
(c) Large graph, lower density (LGLD)

alternatives in Fig. 2 along with their ranks according to their CS are
shown in Table 4.

The ranks for all the alternative in the example in Fig. 2 by the
proposed approach, TOPSIS, as well PROMETHEE and the CS method,
are shown in Table 5. As previously mentioned, equal weights were
assigned to the criteria in TOPSIS and PROMETHEE to offer a more
direct comparison with the CS method, which does not take into
account weights. The ranks in Table 5 shows some agreement between
the TOPSIS, PROMETHEE, and CS (e.g., the most important alter-
native), though many of the rankings are similar (e.g., link (3,4) is
considered to be the eighth most important link by two methods and
seventh by the other). The rankings for the three selected MCDM
methods were compared using the Spearman correlation coefficient
(SCC), where an SCC=1 indicates a perfect global association between
the rankings. In the example, we obtain SCC(TOPSIS, PROMETHEE)
=0.97, SCC(TOPSIS, CS)=0.95, and SCC(PROMETHEE, CS)=0.96,
suggesting a very good association among each of the methods when
selected pairwise. Further, the W-Kendall coefficient of concordance
[34] is 0.97 (p <0.0001), suggesting that there is a very high and
significant agreement among the selected MCDM methods.

While this is but one example, it illustrates the similarity of the
approaches when no weighting is considered. As we want the ability to
give more and less importance to different percentiles, the CS method
is not preferred. And between the two methods that allow for percentile
weighting, TOPSIS has a much simpler calculation. Other advantages
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(b) Small graph, higher density (SGHD)

(d) Large graph, higher density (LGHD)

Fig. 4. Four different networks with different densities.

of TOPSIS relative to other techniques include [31,62]: (i) it is easy to
use with a sound logic that represents the rationale of human choice,
(ii) it gives a scalar value that accounts not only for the best alternative
but for the worst too simultaneously, and (iii) it has the ability to
measure the relative performance rating for each alternative in a simple
mathematical form. As such, we adopt TOPSIS to determine the
importance of links with the approach discussed in Fig. 1, and use
TOPSIS in the larger illustrative examples that follow.

4. Illustrative examples

In this section, we illustrate our proposed approach with different
networks of different sizes and different densities, i.e., with different
ration among edges and nodes.

4.1. Data

In this study, we have used the network design instances considered
by [41] which are generated from a random geometric graph structure
with bi-directional and capacitated edges. A bi-directional edge is
composed of two symmetric directed arcs. Capacities are randomly
assigned to each edge according to a continuous uniform distribution
with the parameters [100, 1000]. Accordingly, four different networks
are generated as shown in.

Fig. 4 (a) a small graph with low density (SGLD) instance which has
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Table 6
Top 10 ranked edges by each IM for SGLD, SGHD, LGLD, and LGHD networks.

Rank MFC MCC EFC FCR WFCR DI
(a) Small graph, lower density (SGLD)
1 (2,13) (0,10) (13,16) (0,10) (0,10) (0,10)
2 (13,16) (7,12) (2,13) (16,19) (11,19) (0,3)
3 (2,10) (11,19) (2,10) 0,3) (7,12) (7,12)
4 (0,10) (8,18) (0,10) (11,19) (5,16) (11,19)
5 (5,16) (5,14) (0,3) (13,16) (16,19) (8,18)
6 0,3) (16,19) (11,19) (5,16) (17,18) (13,16)
7 (16,19) (17,18) (3,6) (7,12) (2,10) (5,14)
8 (5,19) (5,16) (13,17) (2,10) (13,16) (13,17)
9 (3,6) 1,49 6,7) (2,13) (8,18) (1,4)
10 (11,19) (2,10) (1,11) (13,17) 1,49 (5,16)
(b) Small graph, higher density (SGHD)
1 (6,16) (7,9) (6,16) (7,9) (6,16) (6,16)
2 (7,9) 1,7) 6,7) (6,19) 1,7) (0,12)
3 1,7 6,19) (5,12) 1,7) (7,9) (7,15)
4 (6,19) (6,16) (5,16) (6,16) (6,19) (1,7)
5 9,16) (5,12) (0,12) 9,19) (5,12) (7,9)
6 (1,16) (8,18) (7,15) (1,16) (8,18) (6,19)
7 (1,19) (0,12) 1,7) (4,18) (1,11) (3,6)
8 6,7) (7,15) (12,14) (9,16) (1,19) (12,14)
9 (5,16) 9,11) (2,6) 17,18) 8,17) (5,12)
10 (9,19) (8,17) (1,16) (4,17) (14,19) (8,18)
(c) Large graph, lower density (LGLD)
1 (50,54) (4,45) (50,54) (50,54) (50,54) (4,45)
2 (37,68) (50,54) (16,68) (4,45) (4,45) (50,54)
3 (16,68) (41,47) (37,68) (37,68) (37,68) (37,68)
4 (37,43) (37,68) (38,40) (11,31) (41,47) (41,47)
5 (38,40) (5,19) (37,43) (1,11 (5,16) (5,16)
6 (43,50) (5,16) (43,50) (41,47) (11,34) (24,58)
7 (11,38) (11,31) (11,38) (43,50) (16,68) (32,69)
8 (4,45) (24,58) (4,45) (16,68) (11,31) (38,40)
9 (11,31) (1,11) (40,56) (35,45) (18,63) (32,61)
10 (1,11) (11,34) (2,40) (40,56) (38,40) (16,68)
(d) Large graph, higher density (LGHD)
1 (7,37) (29,45) (46,56) (7,37) (46,62) (15,45)
2 (7,36) (35,45) (20,53) (9,46) (40,46) (45,46)
3 (9,46) (29,35) (40,46) (4,60) (46,56) (25,35)
4 (4,60) (15,45) (46,62) (34,46) (20,53) (25,29)
5 (1,55) (15,29) (20,36) (46,50) (15,39) (25,45)
6 2,7) (15,35) (43,55) (2,6) (23,32) (20,45)
7 (46,50) (0,69) (34,52) (43,49) 2,7) (15,25)
8 (46,62) (45,62) (16,41) (7,36) (15,46) (0,12)
9 (34,52) (29,62) (47,56) (46,53) (34,62) (15,29)
10 (46,56) (15,39) (14,43) (0,61) (35,62) (29,45)
Table 7

Top 10 ranked edges by the proposed approach for SGLD, SGHD, LGLD, and LGHD
networks considering equal weights for each IM.

Rank SGLD SGHD LGLD LGHD
1 (0,10) (6,16) (50,54) (46,62)
2 (11,19) a,7) (4,45) (15,39)
3 (7,12) (7,9) (37,68) (15,45)
4 (0,3) (6,19) (41,47) (40,46)
5 (16,19) (5,12) (16,68) (45,46)
6 (13,16) (0,12) (43,50) (20,53)
7 (2,10) (7,15) (38,40) (46,56)
8 (2,13) (12,14) (37,43) (35,62)
9 (5,16) 6,7) (11,31) (20,45)
10 (8,18) (8,18) (11,38) (15,46)
Table 8

The most and least important edge for SGLD, SGHD, LGLD, and LGHD networks.

Network SGLD SGHD LGLD LGHD
Most important edge (0,10) (6,16) (50,54) (46,62)
Least important edge (12,15) (13,17) (20,60) (16,68)
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20 bi-directional edges, (b) a small graph with high density (SGHD)
which has 53 bi-directional edges, (c) a large graph with low density
(LGLD) which has 128 bi-directional edges, and (d) a large graph with
high density (LGHD) which has 791 bi-directional edges.

4.2. Alternative (edges) ranks

We first obtain the score of each edge by each IM and rank them
accordingly where the largest score is the most important edge. So,
Table 6 shows the top 10 ranked edges by each IM for SGLD, SGHD,
LGLD, and LGHD networks, respectively. As in the previous example,
no edge in the network analyzed is considered as the dominant edge.
We then follow the procedure of the proposed approach as shown in
Fig. 1 to obtain a unique rank for the network edges according to their
importance that assesses different aspects of the network performance
and lead to improve the network desired function (e.g., flow). The top
ten edges for each network according to the proposed approach
considering equal weights for each IM are shown in Table 7.

Table 8 shows the most important edge and the least important
edge according to the proposed approach for SGLD, SGHD, LGLD, and
LGHD networks, respectively. They are also shown in Fig. 4 where the
most important edges are in blue color and the least important edges
are in green color.

4.3. Effects of weights

In general, a weight could be assigned to each IMs to emphasize its
value. A possible approach could be simply to choose reasonable
weights for the selected IMs (such that " w,=1). Tervonen and
Lahdelma [59] present several approaches that account for different
decision maker preference information such as absent preference,
interval constraints for weights or complete ranking of the criteria.

To illustrate how the weighting of the IMs could affect the ranking
of the edges, we have applied the proposed approach to the four
networks above with a large number of different sets of weights (1000
generated sets of weights simulated from a uniform distribution
between (0,1), i.e., without any preference information provided by
the decision maker) by using the procedure in Tervonen and Lahdelma
[59]) to find the probability of the occurrence of each edge in each
ranking position [49]. This uncertainty propagation analysis (i.e., the
effects of the uncertainty of the weights) is similar to the SMAA-
PROMETHEE approach of [15].

Fig. 5 shows the heat maps for the top ten ranking positions. Each
heat map displays the top ten highly probable ranked edges where the
darker intersection represents the higher probability of that edge being
ranked in that position. For example, edges (0,10), (6,16) and (50,54)
are always ranked as the most important edges for SGLD, SGHD, and
LGLD networks, respectively, with the consideration of 1000 randomly
generated sets of weights as shown in Fig. 5(a)—(c). Similarly, edge
(46,62) has more probability than other edges to be ranked as the most
important alternative for LGHD network, see Fig. 5(d). However, for
this network, and depending on the weights selected by the decision
maker, edge (15,45) has a high probability of be the most important
edge.

4.3.1. Effects of selected weighting schemes

TOPSIS can incorporate relative weights of criterion importance
[42]. Hence, it is attractive since the subjective input that is needed
from decision makers is limited only to the weights of criteria.
Naturally, depending on the weights source selected, the edges could
be ranked in different positions. In this section, we consider three
different weighting schemes: (i) equal weights, (ii) static weights, such
as those obtained using an elicitation technique (e.g., analytic hierarchy
process (AHP) [53], and (iii) random weights based on uniform
distribution (i.e., U(0,1) as per Section 4.3). Accordingly, we have
obtained the ranks of the alternatives for the four network densities
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Fig. 5. Heat maps showing the probability of the ranking (vertical axis) of the top ten alternatives (horizontal axis).

(SGLD, SGHD, LGLD, LGHD) using these three different weight
sources. The top ten important edges for each network according to
the ranks obtained by TOPSIS based on the edges importance and
considering different sources of weights are found in Table 9. In
addition, the bottom ten alternatives for each network are presented in
Table 10 as well.

Though different weight sources are considered which produce
different ranks for the alternatives by TOPSIS, there is an agreement on
the most important edge(s) obtained by TOPSIS as shown in Table 9.
For instance, edges (0,10), (6,16), (50,54), and (46,62) are always the
most critical edges for SGLD, SGHD, LGLD, and LGHD densities,
respectively, regardless of the source of weights. Likewise, there is an
agreement on the worst alternative at least for two networks: edges
(12,15) and (20,60) are considered the least critical for SGLD and
LGLD networks, respectively, according to the ranks obtained by
TOPSIS with different sets of weights for the criteria, as shown in
Table 10(a) and (c). Also, edge (16,68) is considered the least critical
for LGHD network according to two different weighting schemes as
shown in Table 10(d).

5. Concluding remarks

Analyzing network vulnerability is a key element of network
preparedness planning in advance of disruptive events that might
impact the performance of the network. Hence, many importance
measures (IMs) have been proposed to identify the important compo-
nents in a network with respect to vulnerability. Such IMs produce
valuable information for decision makers, including highlighting the
most important network components according to a specific perfor-
mance function. However, different IMs based on different definitions
could lead to different rankings of network components according to
their importance. Hence, a challenge that is faced by decision makers is
to combine such information from different IMs and generate a unique
rank of network components [47]. To address this challenge, we
propose a new approach in this paper to identify the most important
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network components through a unique rank based on multiple IMs
with different perspectives using a multi-criteria decision analysis tool,
TOPSIS, which can account for decision maker preferences on the
importance of different importance perspectives. The multiple flow-
based IMs provided by [41] are considered as the multiple criteria with
which to compare the importance of network edges. TOPSIS is then
utilized to aggregate these different IMs to find the most important
edges of the network.

The proposed approach is illustrated by assessing the components
(edges) of four different networks with different densities under six
different flow-based IMs. A unique rank of edges for each network is
obtained accordingly by the proposed approach instead of multiple
ranking derived by different IMs with different perspectives. Using the
proposed approach, the edges of each network are ranked based on
their similarities to the positive ideal solution of each network where
the larger similarity indicates the more important edge. Moreover, we
have applied the proposed approach to the four networks with a large
number of different generated sets of weights that are simulated from a
uniform distribution between (0,1) in order to find the probability of
the occurrence of each edge in each ranking position. The first position
was dominated by a single edge in the small graph with low density
(SGLD), the small graph with high density (SGHD) and the large graph
with low density (LGLD) networks while it is not the case for the large
graph with high density (LGHD) network which shows that the larger
size the network is the less domination will be by any edge for any
ranking position. Furthermore, since the only subjective input that is
needed from decision makers is the weights of criteria, we have
obtained the ranks of the alternatives for the four networks by the
proposed approach considering three different weight sources (i.e.,
equal weights, analytic hierarchy process (AHP), and random weights
based on U(0,1)). Though different weights sources are considered
which produce different ranks for the alternatives, there was an
agreement on the most preferred alternative(s) obtained by the
proposed approach for all the four networks but not for the least
preferred alternative(s) for SGHD and LGHD. Despite this agreement
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Table 9
Top 10 ranked edges by the proposed approach with different weights criteria.

Reliability Engineering and System Safety 158 (2017) 142-151

Table 10
Bottom 10 ranked edges by the proposed approach with different weights criteria.

Equal weight Static Random weight Equal weight Static Random weight
(a) Small graph, lower density (SGLD) (a) Small graph, lower density (SGLD)

(0,10) (0,10) (0,10) (13,17) (8,18) (13,17)
(11,19) (11,19) (11,19) (3,6) (13,17) (17,18)
(7,12) (7,12) 0,3) (17,18) (5,14) (5,19)
0,3) (16,19) (7,12) (5,14) (1,4) (1,11)
(16,19) (5,16) (13,16) (1,11) (1,11) 6,7)
(13,16) 0,3) (2,10) 1,4) 6,7) (8,18)
(2,10) (13,16) (2,13) (6,7) (5,19) (5,14)
(2,13) (2,10) (5,16) (5,19) (3,6) (1,4)
(5,16) (17,18) (16,19) (1,9 (1,9 (1,9
(8,18) (2,13) (3,6) (12,15) (12,15) (12,15)
(b) Small graph, higher density (SGHD) (b) Small graph, higher density (SGHD)

(6,16) (6,16) (6,16) (5,13) (13,16) (5,13)
,7) ,7) ,7) (8,13) (3,6) (17,18)
(7,9) 7,9) (7,9) 2,7) 2,7) (4,13)
(6,19) (6,19) (6,19) (4,13) (3,10) (2,10)
5,12) 5,12) 5,12) (16,19) (13,14) (16,19)
(0,12) (8,18) (7,15) (13,14) (2,6) (6,10)
(7,15) (1,19) (0,12) 2,3) (6,10) (8,13)
(12,14) (1,11) 6,7) (6,10) (13,17) 2,3)
(6,7) (8,17) (12,14) (2,10) 2,3) (13,17)
(8,18) (14,19) (1,19) (13,17) (2,10) (13,14)
(c) Large graph, lower density (LGLD) (c) Large graph, lower density (LGLD)

(50,54) (50,54) (50,54) (15,25) (0,65) (15,25)
(4,45) (4,45) (4,45) (57,65) (23,57) (14,66)
(37,68) (37,68) (37,68) (0,57) (14,66) (14,61)
(41,47) (41,47) (41,47) (14,61) (57,65) (23,42)
(16,68) (11,31) (16,68) (23,64) (0,57) (23,64)
(43,50) (1,11) (38,40) (14,66) (23,42) (42,65)
(38,40) (16,68) (37,43) (23,42) (23,64) (42,64)
(37,43) (43,50) (43,50) (42,65) (42,65) (0,57)
(11,31) (5,16) (11,38) (23,65) (23,65) (23,65)
(11,38) (37,43) (40,56) (20,60) (20,60) (20,60)
(d) Large graph, higher density (LGHD) (d) Large graph, higher density (LGHD)

(46,62) (46,62) (46,62) (28,49) (28,67) (19,51)
(15,39) (40,46) (15,39) (30,31) (16,67) (17,63)
(15,45) (46,56) (40,46) (44,49) (44,68) (30,31)
(40,46) (20,53) (20,53) (36,44) (19,51) (28,31)
(45,46) (15,39) (46,56) (16,67) (43,68) (16,67)
(20,53) (23,32) (15,45) (19,55) (19,55) (1,52)
(46,56) 2,7) (45,46) (19,51) (30,36) (28,55)
(35,62) (7,34) (35,62) (30,36) (49,51) (19,55)
(20,45) (34,62) (15,46) (49,51) (44,49) (16,68)
(15,46) (15,46) (23,32) (16,68) (16,68) (28,67)

which could be resulted from the size, density, and setup (connections)
of the considered problems, different weights provided by decision
makers for the IMs could result in different ranks for network
components especially for larger size and higher dense networks.

The proposed approach could be used in the case of a general multi

criteria problem, where the identification of importance and the
ranking are desired for a set of alternatives (e.g., network components)
through a set of criteria (e.g., edge importance measures).
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